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Let C≥0 := {s ∈ C | Re(s) ≥ 0}, and let W+ denote the ring of all functions f : C≥0 → C such that
f(s) = fa(s) +

∑∞
k=0

fke
−stk (s ∈ C≥0), where fa ∈ L1(0,∞), (fk)k≥0 ∈ �1, and 0 = t0 < t1 < t2 < · · ·

equipped with pointwise operations. (Here ·̂ denotes the Laplace transform.) It is shown that the
ring W+ is not coherent, answering a question of Alban Quadrat. In fact, we present two principal
ideals in the domain W+ whose intersection is not finitely generated.
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1. Introduction

The aim of this paper is to show that the ring W+ (defined below) is notcoherent.
We first recall the notion of a coherent ring.

Definition 1.1. Let R be a commutative ring with identity element 1, and let Rm = R× · · · ×R (m
times). Suppose that f = (f1, . . . , fm) ∈ Rm.

(1) An element (g1, . . . , gm) ∈ Rm is called a relation on f if

g1f1 + · · · + gmfm = 0. (1.1)

(2) Let f⊥ denote the set of all relations on f ∈ Rm. (Then f⊥ is an R-submodule of the
R-module Rm.)

(3) The ring R is called coherent if for all m ∈ N and all f ∈ Rm, f⊥ is finitely generated,
that is, there exists a d ∈ N and there exist gj ∈ f⊥, j ∈ {1, . . . , d}, such that for all
g ∈ f⊥, there exist rj ∈ R, j ∈ {1, . . . , d} such that g = r1g1 + · · · + rdgd.
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2 Abstract and Applied Analysis

An integral domain is coherent if and only if the intersection of any two finitely
generated ideals of the ring is again finitely generated; see [1, Theorem 2.3.2, page 45].

The coherence of some rings of analytic functions has been investigated in earlier works.
For example, McVoy and Rubel [2] showed that the Hardy algebra H∞(D) is coherent, while
the disc algebra A(D) is not. Mortini and von Renteln proved that the Wiener algebra W+(D)
(of all absolutely convergent Taylor series in the open unit disc) is not coherent [3]. In this
article, we will show that the ringW+ (defined below, and which is useful in control theory) is
not coherent.

Notation 1. Throughout the article, we will use the following notation:

C≥0 :=
{
s ∈ C | Re(s) ≥ 0

}
. (1.2)

Definition 1.2. Let W+ denote the Banach algebra

W+ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f : C≥0 −→ C

∣∣∣∣∣∣∣∣∣∣∣∣

f(s) = f̂a(s) +
∞∑

k=0

fke
−stk (s ∈ C≥0

)
,

fa : (0,∞) −→ C, fa ∈ L1(0,∞),

∀k ≥ 0, fk ∈ C,
(
fk
)
k≥0 ∈ �1,

∀k ≥ 0, tk ∈ R, 0 = t0 < t1 < t2 < · · ·

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(1.3)

equipped with pointwise operations and the norm

‖f‖W+ :=
∥∥fa
∥∥
L1 +

∥∥(fk
)
k≥0
∥∥
�1 . (1.4)

Here f̂a denotes the Laplace transform of fa, given by

f̂a(s) =
∫∞

0
e−stfa(t)dt, s ∈ C≥0. (1.5)

The above algebra arises as a natural class of transfer functions of stable distributed
parameter systems in control theory; see [4, 5].

Our main result is the following.

Theorem 1.3. The ringW+ is not coherent.

The relevance of the coherence property in control theory can be found in [6, 7]. We will
prove Theorem 1.3 following the same method as in the proof of the noncoherence of W+(D)
given by Mortini and von Renteln in [3].

In Section 3, we will give the proof of Theorem 1.3. But before doing that, in Section 2,
we first prove a few technical results needed in the sequel.

2. Preliminaries

We first recall the definition of the Hardy algebra H∞ of the open right half plane.
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Definition 2.1. Let H∞ denote the Hardy space of all bounded analytic functions in the open
right half plane equipped with the norm

‖ϕ‖∞ := sup
Re(s)>0

∣∣ϕ(s)
∣∣, ϕ ∈ H∞. (2.1)

In order to prove our main result (Theorem 1.3), we will use the relation between the
convergence in H∞ versus that in W+.

Lemma 2.2. If f ∈ W+, then f ∈ H∞ and ‖f‖∞ ≤ ‖f‖W+ .

Proof. Let

f(s) = f̂a(s) +
∞∑

k=0

fke
−stk (

s ∈ C≥0
)
. (2.2)

For s ∈ C≥0, we have

∣∣f̂a(s)
∣∣ =
∣∣∣∣

∫∞

0
e−stfa(t)dt

∣∣∣∣ ≤
∫∞

0
e−Re(s)t

∣∣fa(t)
∣∣dt ≤

∫∞

0
1 · ∣∣fa(t)

∣∣dt =
∥∥fa
∥∥
L1 , (2.3)

and moreover,
∣∣∣∣∣

∞∑

k=0

fke
−stk
∣∣∣∣∣ ≤

∞∑

k=0

∣∣fk
∣∣e−Re(s)tk ≤

∞∑

k=0

∣∣fk
∣∣ · 1 =

∥∥(fk
)
k

∥∥
�1 . (2.4)

So the result follows.

Themaximal idealm0 (defined below) ofW+ will play an important role in the remainder
of this article.

Notation 2. Let m0 denote the kernel of the complex algebra homomorphism f 
→ f(0) : W+ →
C, that is,

m0 :=
{
f ∈ W+ | f(0) = 0

}
.

Then m0 is a maximal ideal of W+, and this maximal ideal plays an important role in the
proof of our main result in the next section. We will prove a few technical results about m0 in
this section, which will be used in the sequel. The following result is analogous to [3, Lemma
1].

Lemma 2.3. Let L/= (0) be an ideal in W+ contained in the maximal ideal m0. If L = Lm0, that is, if
every function f ∈ L can be factorized in a product f = hg of two functions h ∈ L and g ∈ m0, then L
cannot be finitely generated.

Proof. Suppose that

L =
(
f1, . . . , fN

)
/= (0) (2.5)
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is a finitely generated ideal inW+ contained in the maximal ideal m0. By our assumption, there
are functions hn ∈ L, gn ∈ m0 with

fn = hngn (n = 1, . . . ,N). (2.6)

Since hn ∈ L, there exist functions q(n)
k

∈ W+ with

hn =
N∑

k=1

q
(n)
k

fk (n = 1, . . . ,N; k = 1, . . . ,N). (2.7)

From this it follows that

N∑

n=1

∣∣hn

∣∣ ≤ NC
N∑

n=1

∣∣fn
∣∣ = NC

N∑

n=1

∣∣hngn
∣∣ in C≥0, (2.8)

where C is a constant chosen so that

∥∥q(n)
k

∥∥
∞ ≤ C, ∀k and n. (2.9)

(Here ‖·‖∞ denotes the supnorm over C≥0.) This implies together with the Cauchy-Schwarz
inequality that

N∑

n=1

∣∣hn

∣∣2 ≤
(

N∑

n=1

∣∣hn

∣∣
)2

≤N2C2

(
N∑

n=1

∣∣hngn
∣∣
)2

≤N2C2

(
N∑

n=1

∣∣hn

∣∣2
)(

N∑

n=1

∣∣gn
∣∣2
)
. (2.10)

This inequality holds for all s ∈ C≥0. With δ := 1/(N2C2), we obtain the inequality

δ ≤
N∑

n=1

∣∣gn(s)
∣∣2 (2.11)

for all points s ∈ E, where

E :=

{
s ∈ C≥0

∣∣∣∣∣

N∑

n=1

∣∣hn(s)
∣∣2 > 0

}
. (2.12)

Since L/= (0), E is a dense subset of C≥0 (for otherwise, if s0 ∈ C≥0 is such that it has a
neighbourhood V in C≥0 where there is no point of E, then each hn is identically zero in V ,
and by the identity theorem for holomorphic functions, each hn is zero; consequently each fn
is zero, and so L = (0), a contradiction). So by continuity, inequality (2.11) holds in C≥0. But
this contradicts the fact that each gn vanishes at 0.

Remark 2.4. Lemma 2.3 can be proved purely algebraically using Nakayama’s lemma. Indeed,
it holds in the following more general algebraic situation: if I is a nonzero ideal of a
commutative domainD contained in a maximal idealM and I = IM, then I cannot be finitely
generated. However, we have given an analytic proof in our special case above.
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Since every maximal ideal is closed, m0 is a commutative Banach subalgebra of W+,
but obviously without identity element. But there is a substitute, namely the notion of the
approximate identity, which turns out to be useful.

Definition 2.5. Let R be a commutative Banach algebra (without identity element). One says
that R has an approximate identity if there exists a bounded sequence (en)n of elements en in R
such that for any f ∈ R,

lim
n→∞
∥∥enf − f

∥∥ = 0. (2.13)

We will now prove the following result, which shows that the maximal ideal m0 in W+

has an approximate identity.

Theorem 2.6. Let

en :=
s

s + 1/n
, n ∈ N. (2.14)

Then (en)n∈N is an approximate identity for m0.

The existence of an approximate identity for the maximal ideal m0 in W+ is not obvious.
In order to prove Theorem 2.6, we will need the following lemma.

Lemma 2.7. Suppose f̂ ∈ m0. Then, for all ε > 0, there exists a p̂ ∈ m0 such that p has compact support
in [0,∞), and ‖f̂ − p̂‖W+ < ε.

Proof. Let ε > 0 be given. Suppose that

f = fa +
∞∑

k=0

fkδ
(· − tk

)
, (2.15)

where fa ∈ L1(0,∞), (fk)k≥0 ∈ �1, and 0 = t0 < t1 < t2 < · · · . Since ∫∞0 |fa(t)|dt < ∞, we can
choose an M > 0 large enough such that

∫∞

M

∣∣fa(t)
∣∣dt <

ε

4
. (2.16)

With pa(t) := fa(t) if t ∈ [0,M], and 0 otherwise, we have that pa ∈ L1(0,∞) is compactly
supported and

∥∥pa − fa
∥∥
L1 <

ε

4
. (2.17)

Furthermore, select N ∈ N such that
∑

k>N

∣∣fk
∣∣ <

ε

4
. (2.18)

Now let T ∈ (0,∞) be any number satisfying tN < T < tN+1, and define

fT := −
(∫∞

0
pa(t)dt +

∑

0≤k≤N
fk

)
. (2.19)
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Set

p := pa +
∑

0≤k≤N
fkδ
(· − tk

)
+ fTδ(· − T). (2.20)

Then p̂ ∈ W+ and

p̂(0) =
∫∞

0
p(t)dt =

∫∞

0
pa(t)dt +

∑

0≤k≤N
fk + fT = 0. (2.21)

So p̂ ∈ m0. Clearly p has compact support contained in [0,∞). We have

∣∣fT
∣∣ =

∣∣∣∣∣

∫∞

0
pa(t)dt +

∑

0≤k≤N
fk

∣∣∣∣∣

=

∣∣∣∣∣

∫∞

0
fa(t)dt +

∞∑

k=0

fk +
∫∞

0

(
pa(t) − fa(t)

)
dt −

∑

k>N

fk

∣∣∣∣∣

≤
∣∣∣∣

∫∞

0
f(t)dt

∣∣∣∣ +
∥∥pa − fa

∥∥
L1 +

∑

k>N

∣∣fk
∣∣

=
∣∣f̂(0)

∣∣ +
∥∥pa − fa

∥∥
L1 +

∑

k>N

∣∣fk
∣∣

< 0 +
ε

4
+
ε

4
=
ε

2
.

(2.22)

Thus

‖f̂ − p̂‖W+ =
∥∥fa − pa

∥∥
L1 +

∑

k>N

∣∣fk
∣∣ +
∣∣fT
∣∣ <

ε

4
+
ε

4
+
ε

2
= ε. (2.23)

This completes the proof.

We are now ready to prove the existence of an approximate identity for the maximal
ideal m0 inW+.

Proof of Theorem 2.6. We have

en =
s

s + 1/n
=
s + 1/n − 1/n

s + 1/n
= 1 − 1

n

1
s + 1/n

= 1 +
̂

− 1
n
e−t/n. (2.24)

Thus for an n ∈ N,

∥∥en
∥∥
W+ =

∥∥∥∥ −
1
n
e−t/n

∥∥∥∥
L1

+ |1| = 1 + 1 = 2. (2.25)

Given f̂ ∈ W+, and ε > 0 arbitrarily small, in view of Lemma 2.7, we can find a p̂ ∈ m0 such
that p has compact support and ‖f̂ − p̂‖W+ < ε. Then

∥∥enf̂ − f̂
∥∥
W+ ≤

∥∥enp̂ − p̂
∥∥
W+ +

∥∥en
∥∥
W+‖f̂ − p̂‖W+ + ‖f̂ − p̂‖W+ . (2.26)
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So it is enough to prove that

lim
n→∞
∥∥enp̂ − p̂

∥∥
W+ = 0 (2.27)

for all p̂ ∈ m0 such that p has compact support in [0,∞). We do this below.
We have

enp̂ − p̂ =
s + 1/n − 1/n

s + 1/n
p̂ − p̂ = − 1

n

1
s + 1/n

p̂ = − 1
n

(
̂e−t/n ∗ p). (2.28)

Let C denote the convolution e−t/n ∗ p:

C(t) :=
∫ t

0
e−(t−τ)/np(τ)dτ. (2.29)

We note that C ∈ L1(0,∞), since L1(0,∞) is an ideal in W+. Let T > 0 be such that

supp(p) ⊂ [0, T]. (2.30)

We have

∥∥enp̂ − p̂
∥∥
W+ =

1
n
‖C‖L1 =

1
n

∫∞

0

∣∣C(t)
∣∣dt =

1
n

∫T

0

∣∣C(t)
∣∣dt

︸ ︷︷ ︸
(I)

+
1
n

∫∞

T

∣∣C(t)
∣∣dt

︸ ︷︷ ︸
(II)

. (2.31)

We estimate (I) as follows:

(I) =
1
n

∫T

0

∣∣C(t)
∣∣dt =

1
n

∫T

0

∣∣∣∣

∫ t

0
e−(t−τ)/np(τ)dτ

∣∣∣∣dt

≤ 1
n

∫T

0

∫ t

0
e−(t−τ)/n

∣∣p(τ)
∣∣dτ dt

≤ 1
n

(∫T

0

∫ t

0
1 · ∣∣p(τ)∣∣dτ dt

)

︸ ︷︷ ︸
(III)

.

(2.32)

Since the integral (III) does not depend on n, we obtain that

lim
n→∞

1
n

∫T

0

∣∣C(t)
∣∣dt = 0. (2.33)

Furthermore,

(II) =
1
n

∫∞

T

∣∣C(t)
∣∣dt

=
1
n

∫∞

T

e−t/n
∣∣∣∣

∫ t

0
eτ/np(τ)dτ

∣∣∣∣dt

=
1
n

∫∞

T

e−t/n
∣∣∣∣

∫∞

0
eτ/np(τ)dτ

∣∣∣∣dt
(
since supp(p) ⊂ [0, T]

)

=
1
n

∫∞

T

e−t/n
∣∣∣∣p̂
(
− 1
n

)∣∣∣∣dt.

(2.34)
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Since p has compact support in [0, T], p̂ is an entire function by the Payley-Wiener theorem
(see, e.g., [8, Theorem 7.2.3, page 122]). Consequently,

(II) =
1
n

∫∞

T

e−t/n
∣∣∣∣p̂
(
− 1
n

)∣∣∣∣dt = e−T/n
∣∣∣∣p̂
(
− 1
n

)∣∣∣∣−→ n −→ ∞1 · ∣∣p̂(0)∣∣ = 1 · 0 = 0. (2.35)

This completes the proof.

We will also need the following lemma, which is basically a repetition of key steps from
Browder’s proof of Cohen’s factorization theorem; see [9, Theorem 1.6.5, page 74]. We will
need this version since in our application in the proof of Theorem 1.3, we are not able to use
Cohen’s factorization theorem directly.

Lemma 2.8. Let f1, f2 ∈ m0, and δ > 0. Let U(W+) denote the set of all invertible elements in W+.
Then there exists a sequence (gn)n∈N inW+ such that

(1) for all n ∈ N, gn ∈ U(W+);

(2) (gn)n∈N is convergent inW+ to a limit g ∈ m0;

(3) for all n ∈ N, ‖g−1
n fi − g−1

n+1fi‖W+ ≤ δ/2n, i = 1, 2.

Proof. Wewill first prove two general results in steps (A) and (B), which we will use in the rest
of the proof.

(A) Let e ∈ m0 and ‖e‖W+ ≤ K, where K > 1. Then 1 − c + ce ∈ U(W+), where c is a
number chosen such that

0 < c <
1
4K

<
1
4
. (2.36)

Indeed,
∥∥∥∥

c

c − 1
e

∥∥∥∥
W+

<
1/(4K)
3/4

·K =
1
3
< 1, (2.37)

and so

(1 − c + ce)−1 =
1

1 − c

∞∑

k=0

(
c

c − 1

)k

ek. (2.38)

(B) Furthermore, under the same assumptions and notation as in (A) above, we now
show that if ‖eF − F‖W+ is small for some F, then so is ‖EF − F‖W+ , where E := (1 − c + ce)−1.
Since

1 =
1

1 − c

∞∑

k=0

(
c

c − 1

)k

, (2.39)

we have

‖EF − F‖W+ =

∥∥∥∥∥
1

1 − c

∞∑

k=0

(
c

c − 1

)k(
ekF − F

)
∥∥∥∥∥
W+

≤ 1
1 − c

∞∑

k=0

(
c

1 − c

)k∥∥ekF − F
∥∥
W+ . (2.40)

But

∥∥ekF−F∥∥W+=

∥∥∥∥∥

k−1∑

j=0

(
ej+1F−ejF)

∥∥∥∥∥
W+

≤
k−1∑

j=0

∥∥ej
∥∥
W+‖eF−F‖W+ ≤‖eF−F‖W+

k−1∑

j=0

‖e‖jW+ <‖eF−F‖W+
Kk

K−1 .

(2.41)
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Hence

‖EF − F‖W+ <‖eF − F‖W+
1

1 − c

∞∑

k=0

1
K − 1

(
1

4(1 − c)

)k

<
2

K − 1
‖eF − F‖W+ . (2.42)

This estimate will be used in constructing the sequence of gn’s.
Let (en)n∈N denote the approximate identity for m0 from Theorem 2.6. Let K > 1 be such

that ‖en‖W+ ≤ K for all n ∈ N. Choose c such that

0 < c <
1
4K

<
1
4
. (2.43)

Wewill inductively define a sequence (emk
)k∈N with terms from the approximate identity

for m0 such that if

gn := c
n∑

k=1

(1 − c)k−1emk
+ (1 − c)n, (2.44)

then we have ‖fi − g−1
1 fi‖W+ < δ/2, i = 1, 2, and

(P1) for all n ∈ N, gn ∈ U(W+),

(P2) for all n ∈ N, ‖g−1
n fi − g−1

n+1fi‖W+ < δ/2n, i = 1, 2.

Since (en)n∈N is an approximate identity for m0, we can choosem1 such that

∥∥em1fi − fi
∥∥
W+ <

δ

4
(K − 1), i = 1, 2. (2.45)

Define g1 = cem1 + 1 − c. So by (A), g1 ∈ U(W+) and using the calculation in (B), we see that

∥∥fi − g−1
1 fi
∥∥
W+ <

δ

2
, i = 1, 2. (2.46)

Suppose that em1 , . . . , emn
have been constructed, so that gn defined by (2.44) satisfies (P1) and

(P2). We assert that if we choose emn+1 such that

∥∥emn+1fi − fi
∥∥
W+ (i = 1, 2),

∥∥emn+1emk
− emk

∥∥
W+ (1 ≤ k ≤ n) (2.47)

are sufficiently small, then gn+1 defined by (2.44) satisfies (P1) and (P2), completing the
induction step.

Indeed, if E := (1 − c + cemn+1)
−1, we have

gn = E−1c
n∑

k=1

(1 − c)k−1Eemk
+ (1 − c)n,

gn+1 = E−1
(
c

n∑

k=1

(1 − c)k−1Eemk
+ (1 − c)n

)
.

(2.48)
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Let Gn be defined by

Gn = c
n∑

k=1

(1 − c)k−1Eemk
+ (1 − c)n. (2.49)

Then we have

∥∥Gn−gn
∥∥
W+<c

n∑

k=1

(1−c)k−1∥∥Eemk
− emk

∥∥
W+

<max
1≤k≤n

∥∥Eemk
− emk

∥∥
W+<

2
K − 1

max
1≤k≤n

∥∥emn+1emk
− emk

∥∥
W+ .

(2.50)

Hence Gn ∈ U(W+) and moreover ‖G−1
n −g−1

n ‖W+ is small, provided only that ‖emn+1emk
−emk

‖W+

is small for k = 1, . . . , n. (Indeed, this is because U(W+) is an open set inW+.)
Since gn+1 = E−1Gn, we have then gn+1 ∈ U(W+), g−1

n+1 = G−1
n E, and so for i = 1, 2,

∥∥g−1
n+1fi − g−1

n fi
∥∥
W+ =

∥∥G−1
n Efi − g−1

n fi
∥∥
W+

≤ ∥∥G−1
n Efi − g−1

n Efi
∥∥
W+ +

∥∥g−1
n Efi − g−1

n fi
∥∥
W+

≤ ∥∥G−1
n − g−1

n

∥∥
W+

∥∥Efi
∥∥
W+ +

∥∥g−1
n

∥∥
W+

∥∥Efi − fi
∥∥
W+ .

(2.51)

Moreover, recall that by (B), we know that

∥∥Efi − fi
∥∥
W+ ≤ 2

K − 1
∥∥emn+1fi − fi

∥∥
W+ , i = 1, 2. (2.52)

Thus if ‖emn+1fi − fi‖W+ (i = 1, 2) and ‖emn+1emk
− emk

‖W+ (1 ≤ k ≤ n) are sufficiently small, we
will have ‖g−1

n+1fi − g−1
n fi‖W+ as small as we please. This completes the induction step.

Since ‖emk
‖W+ ≤ K, 0 < 1 − c < 1, andW+ is a Banach algebra, it follows that

gn −→ c
∞∑

k=1

(1 − c)k−1emk
=: g ∈ m0, (2.53)

and the proof is completed.

3. Noncoherence of W+

Proof of Theorem 1.3. We will use the characterization that an integral domain is coherent if
and only if the intersection of any two finitely generated ideals of the ring is again finitely
generated; see [1, Theorem 2.3.2, page 45]. In fact, we present two finitely generated ideals I
and J such that I ∩ J is not finitely generated.
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Let p, S be given by

p =
(
1 − e−s

)3
, S = e−(1+e

−s)/(1−e−s). (3.1)

Clearly we have p ∈ m0.
It is known (see, e.g., [3, Remark after Theorem 1, page 224]) that

(1 − z)3e−(1+z)/(1−z) ∈ W+(D) :=

{
f(z) =

∞∑

n=0

anz
n (z ∈ D)

∣∣∣∣∣

∞∑

n=0

∣∣an

∣∣ < ∞
}
. (3.2)

Here D := {z ∈ C | |z| ≤ 1}. So if an’s are defined via

(1 − z)3e−(1+z)/(1−z) = a0 + a1z + a2z
2 + a3z

3 + · · · , z ∈ D, (3.3)

then we have
∞∑

k=0

∣∣ak

∣∣ < ∞. (3.4)

If Re(s) > 0, then e−s ∈ D, and so from (3.3), we have

pS = a0 + a1e
−s + a2e

−2s + a3e
−3s + · · · , Re(s) > 0. (3.5)

Since
∑∞

k=0|ak| < ∞, the right-hand side in (3.5) belongs toW+. So pS ∈ W+.
We define the ideals I = (p) and J = (pS) ofW+.
Let

K :=
{
pSf | f ∈ W+ and Sf ∈ W+}. (3.6)

We claim that K = I ∩ J . Trivially K ⊂ I ∩ J . To prove the reverse inclusion, let g ∈ I ∩ J .
Then there exist two functions f and h in W+ such that g = ph = pSf . Since p /= 0 and W+ is an
integral domain, we obtain that Sf = h ∈ W+. So g ∈ K.

Let L denote the ideal

L :=
{
f ∈ W+ | Sf ∈ W+}. (3.7)

Then K := pSL. Since S has a singularity at s = 0, it follows that L ⊂ m0. We will show that
L = Lm0. Let f ∈ L. We would like to factor f = hg with h ∈ L and g ∈ m0. Applying Lemma 2.8
with f1 := f ∈ m0 and f2 := Sf ∈ m0, for any δ > 0, there exists a sequence (gn)n∈N in W+ such
that

(1) for all n ∈ N, gn ∈ U(W+);

(2) (gn)n∈N
is convergent inW+ to a limit g ∈ m0;

(3) for all n ∈ N,

∥∥g−1
n f − g−1

n+1f
∥∥
W+ ≤ δ

2n
,

∥∥g−1
n Sf − g−1

n+1Sf
∥∥
W+ ≤ δ

2n
. (3.8)

Put

hn := g−1
n f, Hn := g−1

n Sf. (3.9)
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Then hn ∈ m0. AlsoHn ∈ m0, since |S| is bounded by 1 on Re(s) > 0 and f(0) = 0. The estimates
above imply that (hn)n∈N and (Hn)n∈N are Cauchy sequences in W+. Since m0 is closed, they
converge to elements h and H, respectively, in m0, that is, hn = g−1

n f → h and Hn = g−1
n Sf =

Shn → H. Since convergence in W+ implies convergence in H∞ (Lemma 2.2), it follows that

hn −→ H∞h
(
since hn −→ W+h

)
,

Shn −→ H∞Sh
(
since hn −→ H∞h, S ∈ H∞),

Shn −→ H∞H
(
since Hn −→ W+H

)
(3.10)

and so by the uniqueness of the limit of the sequence (Shn)n∈N in H∞, we have Sh = H. Also,
inW+-norm we have

f = lim
n→∞

hngn = hg, (3.11)

since multiplication is continuous in the Banach algebra W+. Since h and Sh = H belong to
m0 ⊂ W+, we see that h ∈ L. Moreover, as g ∈ m0, we have got the desired factorization and
L = Lm0.

But L/= (0), since p ∈ L. By Lemma 2.3, it follows that L cannot be finitely generated.
Therefore, pSL = I ∩ J is not finitely generated.

Remark 3.1. The ideal L in the above proof can be interpreted as an ideal of denominators; see [10,
page 396]. Using the fact that pS ∈ W+, we have S ∈ Q(W+), where Q(W+) denotes the field of
fractions of W+. We can then consider the fractional ideal M := W+ +W+S of W+ (see [11, page
19]) and the ideal of denominators L of S, namely L = W+ : M = {d ∈ W+ | dS ∈ W+}.

Based on the results in [12, Theorem 3, Example 3], it follows that S ∈ Q(W+) does
not admit a weak coprime factorization, since L is not a principal ideal of W+. In particular,
S does not admit a coprime factorization, that is, there do not exist d, x, y, n ∈ W+ such that
d /= 0, S = n/d, and dx − ny = 1. Moreover, S is not internally stabilizable, since otherwise L
would be generated by two elements. Finally, the fact that L is not finitely generated implies
that W+ is not a greatest common divisor domain: indeed, were it the case that W+ is a greatest
common divisor domain, then by [12, Corollary 3], every element in Q(W+) would admit a
weak coprime factorization.
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