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1. Introduction* Let M* denote the modular group consisting of
all integral rxr matrices with determinant + 1. Define the subgroup Gnf

of Mt to be the group of all matrices

o
of Mt for which CΞΞΞO (modn). M. Newman [1] recently established
the following theorem :

Let H be a subgroup of M% satisfying GmnCZH(ZGn. Then H=Gan,
where a\m.

In this note we indicate two directions in which the theorem may
be extended: (i) Letting the elements of the matrices lie in the ring of
integers of an algebraic number field, and (ii) Considering matrices of
higher order.

2. Ring of algebraic integers* For simplicity, we restrict our at-
tention to the group G of 2x2 matrices

(1) . A-C b

\c d
where α, b, c, d lie in the ring £& of algebraic integers in an algebraic
number field. Small Roman letters denote elements of £^, German
letters denote ideals in £&.

Let G(3l) be the subgroup of G defined by the condition that CΞΞO

(mod 91). We shall prove the following.

THEOREM 1. Let H be a subgroup of G satisfying

(2) G ( ^ ) C H C G P ) ,

where (3JΪ, (6)) = (1). Then H^GφW) for some

Proof. 1. As in Newman's proof, we use induction on the number
of prime ideal factors of 3JL The result is clear for 9Jέ=(l). Assume
it holds for a product of fewer than k prime ideals, and let 2Ji==£V«-
Qfc (&i^l)> where the O4 are prime ideals (not necessarily distinct). For
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