INVARIANT MEANS AND THE STONE-ČECH COMPACTIFICATION

CARROLL WILDE AND KLAUS WITZ

In the first part of this paper the Arens multiplication on a space of bounded functions is used to simplify and extend results by Day and Frey on amenability of subsemigroups and ideals of a semigroup. For example it is shown that if S is a left amenable cancellation semigroup then a subsemigroup A of S is left amenable if and only if each two right ideals of A intersect. The remainder and major portion of this paper is devoted to relations between left invariant means on m(S) and left ideals of βS (=the Stone-Čech compactification of S). We find: If μ is a left invariant mean on m(S) and if S has left cancellation then $\mathscr{S}(\mu)$, the support of μ considered as a Borel measure on $\beta(S)$, is a left ideal of $\beta(S)$. An application is that if S is a left amenable semigroup and I is a left ideal of βS , then K(I), the w*-closed convex hull of I, contains an extreme left invariant mean; if in addition S has cancellation then K(I) contains a left invariant mean which is the w^* -limit of a net of unweighted finite averages.

2. Preliminaries. For standard notation and terminology we follow Day [2] in functional analysis and Kelley [6] in topology. Specific terms and notation in amenable semigroups follow Day [1].

Let S be any set, and let m(S) be the Banach space of all bounded, real-valued functions on S, equipped with the supremum norm. A mean on m(S) is a positive linear functional on m(S) which has norm one; every mean μ satisfies $\mu(e) = 1$, where e is the function which is identically one on S. We denote by M(=M(S)) the set of all means on m(S). Then M is a nonempty, convex subset of $m(S)^*$; it is also compact in the w*-topology, the only topology we consider in $m(S)^*$.

For each $s \in S$, q(s) denotes the evaluation functional at s:

$$qs(x) = x(s) (x \in m(S))$$
.

We have $qs \in M(s \in S)$ and βS , the Stone-Céch compactification of the discrete space S, coincides with the $(w^*$ -) closure of qS in $m(S)^*$, so that $\beta S \subseteq M$. The symbols k(T), K(T) will always indicate the convex hull, resp. the $(w^*$ -) closed convex hull, of any subset T of $m(S)^*$; in particular, we write kA for k(qA) and KA for K(qA) when $A \subseteq S$. Then we have $M = KS = K(\beta S)$.

Now suppose S is a semigroup. Then each $s \in S$ determines two mappings, l_s and r_s , on m(S) defined by $l_s x(t) = x(st)$ and $r_s x(t) = x(ts)$ $(t \in S, x \in m(S))$. A mean μ on m(S) is left [right] invariant if