AUTOMORPHISMS OF POSTLIMINAL C*-ALGEBRAS

E. C. LANCE

Let $\alpha(\mathfrak{A})$ denote the group of automorphisms of a C^* algebra \mathfrak{A} . The object of this paper is to give an intrinsic algebraic characterization of those elements α of $\alpha(\mathfrak{A})$ which are induced by a unitary operator in the weak closure of \mathfrak{A} in every faithful representation, and it is attained for the class of C^* -algebras known as GCR, or more recently postliminal. The relevant condition is that α should map closed two-sided ideals of \mathfrak{A} into themselves, and the main theorem (Theorem 2) may be thought of as an analogue for C^* -algebras of Kaplansky's theorem for von Neumann algebras, namely that an automorphism of a Type I von Neumann algebra is inner if and only if it leaves the centre elementwise fixed. The proof of Theorem 2 requires the—probably unnecessary—assumption that \mathfrak{A} is separable.

By a C^* -algebra we mean a Banach algebra over the complex numbers, with a conjugate-linear anti-automorphic involution $A \rightarrow A^*$ satisfying $||A^*A|| = ||A^*|| \cdot ||A||$. The mappings of C*-algebras which we consider (automorphisms, representations, etc.) will always be assumed to preserve the adjoint operation, and by a homomorphic image of a C^* -algebra \mathfrak{A} , we mean the image of a homomorphism from \mathfrak{A} into another C^{*}-algebra \mathfrak{B} (this is automatically a C^{*}-subalgebra of \mathfrak{B} [2; 1.8.3]). We shall refer to Dixmier's book [2] for all standard results that we need to quote concerning C^* -algebras. By the theorem of Gelfand-Naimark (see, e.g. [2; 2.6.1]), a C^{*}-algebra has an isometric representation as an algebra of operators on a Hilbert space, and we shall usually think of a given C^* -algebra as being "concretely" represented on some Hilbert space. A state of a C^* -algebra \mathfrak{A} is a positive linear functional of norm one. The set \mathfrak{S} of states of \mathfrak{A} is a convex subset of the (Banach) dual space of \mathfrak{A} . If \mathfrak{A} has an identity element then \mathfrak{S} is w^* -compact, but in any case \mathfrak{S} contains an abundance of extreme points, which are called *pure states*. The set of pure states of \mathfrak{A} will be denoted by \mathfrak{P} .

Given a state ρ of \mathfrak{A} , there is a representation ϕ_{ρ} of \mathfrak{A} on a Hilbert space H_{ρ} , and a unit vector x_{ρ} in H_{ρ} such that $\{\phi_{\rho}(A)x_{\rho}: A \in \mathfrak{A}\}$ is dense in H_{ρ} (i.e. the representation ϕ_{ρ} is cyclic) and

$$\rho(A) = \langle \phi_{\rho}(A) x_{\rho}, x_{\rho} \rangle$$

for each $A \in \mathfrak{A}$. ϕ_{ρ} is irreducible if and only if ρ is pure. Given a state ρ of \mathfrak{A} , and a representation ϕ of \mathfrak{A} on H, we say that ρ is a vector state (in the representation ϕ) if $\rho(A) = \langle \phi(A)x, x \rangle$ for some