ON ABELIAN PSEUDO LATTICE ORDERED GROUPS

J. ROGER TELLER

Throughout this paper po-group will mean partially ordered abelian group. A subgroup H of a po-group G is an o-ideal if H is a convex, directed subgroup of G. A subgroup M of G is a value of $0 \neq g \in G$ if M is an o-ideal of G that is maximal without g. Let $\mathscr{M}(g) = \{M \subseteq G \mid M \text{ is a value of } g\}$ and $\mathscr{M}^*(g) = \bigcap \mathscr{M}(g)$. Two positive elements $a, b \in G$ are pseudo disjoint (p-disjoint) if $a \in \mathscr{M}^*(b)$ and $b \in \mathscr{M}^*(a)$, and G is a pseudo-lattice ordered group (pl-group) if each $g \in G$ can be written g = a - b where a and b are p-disjoint.

The main result of §2 shows that every pl-group G is a Riesz group. That is, G is semiclosed $(ng \ge 0 \text{ implies } g \ge 0 \text{ for all } g \in G$ and all positive integers n), and G satisfies the Riesz interpolation property; if, whenever $x_1, \dots, x_m, y_1, \dots, y_n$ are elements of G and $x_i \le y_j$ for $1 \le i \le m$, $1 \le j \le n$, then there is an element $z \in G$ such that $x_i \le z \le y_j$.

In §3, we determine which Riesz groups are also pl-groups. In the final section it is shown that each pair of p-disjoint elements a, b determines an o-ideal H(a, b) with the property that if a - b = x - y where x and y are also p-disjoint, then H(a, b) = H(x, y) and $a - x = b - y \in H(a, b)$.

The concept of a pl-group has been introduced by Conrad [1]. For each $g \in G$, $\mathscr{M}^*(g)$ exists by definition, and in particular, $\mathscr{M}^*(0) = G$. In §2 we list a number of properties of pl-groups that will be used. We adopt the notation a || b for $a \not\geq b$ and $b \not\geq a$. If S is a subset of a po-group G and $a \in G$, the notation a > S means a > s for all $s \in S$. If H is an o-ideal of a po-group G, a natural order is defined in G/H by setting $X \in G/H$ positive if X contains a positive element of G. All quotient structures will be ordered in this manner. Finally, $G^+ = \{x \in G | x \geq 0\}$.

2. Some properties of pl-groups. We first list a number of properties of pl-groups. The proofs of these may be found in [1]. If G is a pl-group, then

(1) G is semiclosed.

(2) G is directed.

(3) The intersection of o-ideals of G is an o-ideal.

(4) If $g \in G$ and $M \in \mathscr{M}(g)$ and M' is the intersection of all o-ideals of G that properly contain M, then $g \in M'$, M'/M is o-isomorphic to a naturally ordered subgroup of the real numbers and, if $M < X \in G/M \setminus M'/M$, then X > M'/M.