FUNCTIONS REPRESENTED BY RADEMACHER SERIES

JAMES R. MCLAUGHLIN

A series of the form $\sum_{m=1}^{\infty} a_m r_m(t)$, where $\{a_m\}$ is a sequence of real numbers and $r_m(t)$ denotes the *m*th Rademacher function, sign $\sin(2^m \pi t)$, is called a Rademacher series (as usual, sign 0 = 0).

Letting f(t) denote the sum of this series whenever it exists, we shall investigate the effect that various conditions on $\{a_m\}$ have on the continuity, variation, and differentiability properties of f.

2. Continuity properties. We now prove

THEOREM (2.1). If $\sum |a_m| < \infty$, then f(t) is continuous at dyadic irrationals (i.e., numbers not of the form $p/2^k$) and has right and left hand limits everywhere in [0, 1].

Proof. Under our hypothesis we have that $\sum a_m r_m(t)$ converges uniformly to f(t), which implies our conclusion since the Rademacher functions are continuous at dyadic irrationals and have right and left hand limits everywhere in [0, 1].

In general, the right and left hand limits of f(t) are unequal at dyadic rationals. We now investigate under what conditions we have equality and prove.

THEOREM (2.2). If $\sum |a_m| < \infty$, then the following are equivalent:

- (a) $a_k = \sum_{m=k+1}^{\infty} a_m$,
- (b) $f(p2^{-k} + \varepsilon_n) \longrightarrow f(p2^{-k})$ as $n \longrightarrow \infty$,
- (c) $f(p2^{-k} + \delta_n) \rightarrow f(p2^{-k}) as n \rightarrow \infty$,
- (d) $f(p2^{-k} + \varepsilon_n) f(p2^{-k} + \delta_n) \rightarrow 0 \text{ as } n \rightarrow \infty$,

where $\{\varepsilon_n\}$ and $\{\delta_n\}$ are some positive and negative sequences tending to zero, and p is an odd integer.

Proof.

$$f(p2^{-k} + t) - f(p2^{-k}) = \sum_{m=1}^{k-1} a_m r_m (p2^{-k} + t) - a_k r_k(t) + \sum_{m=k+1}^{\infty} a_m r_m(t) - \sum_{m=1}^{k-1} a_m r_m (p2^{-k}) ,$$

since $r_m(p2^{-k} + t) = r_m(t)$ if $m \ge k + 1$, and $r_k(p2^{-k} + t) = -r_k(t)$.