NORMAL EXPECTATIONS IN VON NEUMANN ALGEBRAS

A. DE KORVIN

Let h and k be two Hilbert spaces, $h \otimes k$ will denote the tensor product of h and k. Let \mathscr{A} be a von Neumann algebra acting on h. Let ψ be an ampliation of \mathscr{A} in $h \otimes k$, i.e., ψ is a map of \mathscr{A} into bounded linear operators of $h \otimes$ k and $\psi(\mathscr{A}) = \mathscr{A} \otimes I_k$ (I_k is the identity map on k). Let $\mathscr{\widetilde{A}}$ be the image of \mathscr{A} by ψ .

The purpose of this paper is to prove the following result: If \mathscr{B} is a subalgebra of \mathscr{A} and if \mathscr{B} is the range of a normal expectation φ defined on \mathscr{A} , then there exists an ampliation of \mathscr{A} in $h \otimes k$, independent of \mathscr{B} and of φ , such that $\varphi \otimes I_k$ is a spatial isomorphism of \mathscr{A} .

Let \mathscr{A} and \mathscr{D} be two C^* algebras with identity. Suppose $\mathscr{B} \subset \mathscr{A}$. Let φ be a positive linear map of \mathscr{A} on \mathscr{D} such that φ preserves the identity and such that $\varphi(BX) = B\varphi(X)$ for all B in \mathscr{D} and all X in \mathscr{A} . φ is then defined to be an expectation of \mathscr{A} on \mathscr{D} . The extension of the notion of an expectation in the probability theory sense, to expectations on finite von Neumann algebra is largely due to J. Dixmier and H. Umegaki [1]. In [4] Tomiyama considers an expectation on von Neumann algebras to be a projection of norm one. If φ is an expectation in the sense $\varphi(BX) = B\varphi(X)$, φ positive and φ preserves identities, then $\varphi(XB) = \varphi(X)B$ for all X in \mathscr{A} , B in \mathscr{D} . \mathscr{D} is the set of fixed points of φ . By writing $\varphi[(X - \varphi(X))^* (X - \varphi(X))] \ge 0$ we have $\varphi(X^*X) \ge \varphi(X)^*\varphi(X)$. In particular φ is a bounded map. The result stated in the previous paragraph extends a result by Nakamura, Takesaki, and Umegaki [2], who consider the case when \mathscr{A} is a finite von Neumann algebra.

2. Preliminaries. Basic definitions and some essentially known results will now be given for ready reference. Let M and N be C^* algebras and φ a positive linear map of M on N. Let M_n be the set of all $n \times n$ matrices whose entries are elements of M, call those entries $A_{i,j}$. Define for each n, $\varphi^{(n)}(A_{i,j}) = (\varphi(A_{i,j})); \varphi^n$ is then a map of M_n on N_n . φ is called *completely positive* if each φ^n is.

Let \mathscr{A} and \mathscr{B} be two von Neumann algebras, with $\mathscr{B} \subset \mathscr{A}$. Let φ be an expectation of \mathscr{A} on \mathscr{B} . φ is called *faithful* if for any T in $\mathscr{A}, \varphi(TT^*) = 0$ implies T = 0. Let A_{α} be a net of uniformly bounded self adjoint operators in \mathscr{A} . φ is called *normal* if

$$\sup_{\alpha} \varphi(A_{\alpha}) = \varphi(\sup_{\alpha} A_{\alpha}) .$$