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PROVING THAT WILD CELLS EXIST

P. H. DOYLE AND J. G. HOCKING

In their famous paper Fox and Artin constructed several
examples of wild cells in 3-space. The present authors construct
a wild disk D in the 4-sphere S4 with the property that the
proof of nontameness is perhaps the most elementary possible.
We require only the knowledge that if K is the trefoil knot
in the 3-sphere S 3 , then the fundamental group πx{Sz — K) is
not abelian. Parenthetically, the wild disk D constructed here
has the property that every arc on D is tame, a fact which
follows immediately from the construction.

In S3 let {Ki} be a sequence of polygonal trefoil knots that con-
verge to a point q while each Kό lies interior to a 3-simplex that
meets no other K{. We consider S3 as being the equator of S4 while
H is the upper hemisphere of S\ In H— S3 let {p<} be a sequence of
points converging to q. If PiKt is the cone over Kt with vertex pif

let {Pi} be so chosen that the disks {3><1Q are disjoint in pairs. Now
in S3 join pxKr and p2K2 by a polyhedral disk Dx so that pj£x U A U pj&z
is a disk disjoint from ((JΓ ViKi) U q. We next join pzK2 and pzKz by
a polyhedral disk, D2t in S3 so that PyKx U A U P%K2 U A U p3K3 is a
disk disjoint from ((JΓ ViKi) U q. This process is continued so that as
i —> oo the diameter of Z^ tends to 0 and the disk D is

As a subset of S4, D is locally tame [1] except perhaps at q.

THEOREM. D is wild in S\

The proof is given in two lemmas.

LEMMA 1. // there is a homeomorphism h of S4 onto S4 such
that h(D) is the union of a finite number of triangles, then for some
point pj in D there is a neighborhood Ud of pd in D and for each
open set Vj in S4 containing p3- there is a neighborhood Vj c V] of
pj such that π^Vj — Uό) is abelian.

Proof. If h exists then {h(Pi)} contains a point that lies in the
interior of a disk formed by the union of two triangles. Call this
point h(pj). Then pά has a neighborhood meeting the condition in the
lemma while π^Vj — Z7, ) is the infinite cyclic group.
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