PROVING THAT WILD CELLS EXIST

P. H. Doyle and J. G. Hocking

Abstract

In their famous paper Fox and Artin constructed several examples of wild cells in 3 -space. The present authors construct a wild disk D in the 4 -sphere S^{4} with the property that the proof of nontameness is perhaps the most elementary possible. We require only the knowledge that if K is the trefoil knot in the 3 -sphere S^{3}, then the fundamental group $\pi_{1}\left(S^{3}-K\right)$ is not abelian. Parenthetically, the wild disk D constructed here has the property that every arc on D is tame, a fact which follows immediately from the construction.

In S^{3} let $\left\{K_{i}\right\}$ be a sequence of polygonal trefoil knots that converge to a point q while each K_{j} lies interior to a 3 -simplex that meets no other K_{i}. We consider S^{3} as being the equator of S^{4} while H is the upper hemisphere of S^{4}. In $H-S^{3}$ let $\left\{p_{i}\right\}$ be a sequence of points converging to q. If $p_{i} K_{i}$ is the cone over K_{i} with vertex p_{i}, let $\left\{p_{i}\right\}$ be so chosen that the disks $\left\{p_{i} K_{i}\right\}$ are disjoint in pairs. Now in S^{3} join $p_{1} K_{1}$ and $p_{2} K_{2}$ by a polyhedral disk D_{1} so that $p_{1} K_{1} \cup D_{1} \cup p_{2} K_{2}$ is a disk disjoint from $\left(\cup_{3}^{\infty} p_{i} K_{i}\right) \cup q$. We next join $p_{2} K_{2}$ and $p_{3} K_{3}$ by a polyhedral disk, D_{2}, in S^{3} so that $p_{1} K_{1} \cup D_{1} \cup p_{2} K_{2} \cup D_{2} \cup p_{3} K_{3}$ is a disk disjoint from $\left(\bigcup_{4}^{\infty} p_{i} K_{i}\right) \cup q$. This process is continued so that as $i \rightarrow \infty$ the diameter of D_{i} tends to 0 and the disk D is

$$
\left(\bigcup_{1}^{\infty}\left(p_{i} K_{i} \cup D_{i}\right)\right) \cup q .
$$

As a subset of S^{4}, D is locally tame [1] except perhaps at q.

Theorem. D is wild in S^{4}.

The proof is given in two lemmas.
Lemma 1. If there is a homeomorphism h of S^{4} onto S^{4} such that $h(D)$ is the union of a finite number of triangles, then for some point p_{j} in D there is a neighborhood U_{j} of p_{j} in D and for each open set V_{j}^{\prime} in S^{4} containing p_{j} there is a neighborhood $V_{j} \subset V_{j}^{\prime}$ of p_{j} such that $\pi_{1}\left(V_{j}-U_{j}\right)$ is abelian.

Proof. If h exists then $\left\{h\left(p_{i}\right)\right\}$ contains a point that lies in the interior of a disk formed by the union of two triangles. Call this point $h\left(p_{j}\right)$. Then p_{j} has a neighborhood meeting the condition in the lemma while $\pi_{1}\left(V_{j}-U_{j}\right)$ is the infinite cyclic group.

