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DUAL SPACES OF
CERTAIN VECTOR SEQUENCE SPACES

RONALD C. ROSIER

This article is an investigation of certain spaces of
sequences with values in a locally convex space analogous to
the generalized sequence spaces introduced by Pietsch in
his monograph Verallgemeinerte Volkommene Folgenr'dume
(Akademie-Verlag, Berlin, 1962). Pietsch combines a perfect
sequence space A and a locally convex space E to obtain the
space A(E) of all E valued sequences x = (xn) such that the
scalar sequence «α, xn}) is in A for every ae Ef. Define A{E)
to be the space of all E valued sequences x = (xn) such that
the scalar sequence (p(xn)) is in A for every continuous semi-
norm p on E. The spaces A(E) and A{E} are topologized
using the topology of E and a certain collection ^ of bounded
subsets of Ax

9 the a — dual of A.

The criteria for bounded sets, compact sets, and com-
pleteness are similar for both spaces. The significant differ-
ence lies in the duality theory. The dual of Λ(E)^> is difficult
to represent, but the dual of A{E}^ is shown to be easily
representable for general A and E. For many special cases
of A and E the dual of A{E}^ is of the form A*{E'} where
Ax is the a — dual of A and Ef is the strong dual of E.

We begin by recalling basic definitions and elementary facts about
sequence spaces and establishing some notation. After defining the
space [A{E}^\ and deriving some elementary properties, we proceed to
a description of its dual space. We show that the notion of a " funda-
mentally Λ-bounded" space E provides sufficient conditions for the
duality relationship A{E)f — AX{E}. We next show that there are
large classes of A and E satisfying these conditions and we conclude
by applying our results to the case A — lv obtain, for example, that
the strong dual of 1*{E} is lq{E'} for E a normed, Frechet, or {DF)~
space, 1 ^ p < oo, p~ι + q-1 = 1.
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2* Definitions and notations. A sequence space A is a vector
space of real or complex sequences with the usual coordinatewise
operations. To each sequence space A there corresponds another
sequence space Ax, called the a — dual of of A, consisting of all a =
(a%), such that the scalar products <α, β) = Σanβn converge absolutely,
that is Σ I anβn | < ©o, for all β in A. Letting Axx denote the a — dual of
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