DUAL SPACES OF CERTAIN VECTOR SEQUENCE SPACES

RONALD C. ROSIER

This article is an investigation of certain spaces of sequences with values in a locally convex space analogous to the generalized sequence spaces introduced by Pietsch in his monograph Verallgemeinerte Volkommene Folgenrüume (Akademie-Verlag, Berlin, 1962). Pietsch combines a perfect sequence space Λ and a locally convex space E to obtain the space $\Lambda(E)$ of all E valued sequences $x = (x_n)$ such that the scalar sequence $(\langle a, x_n \rangle)$ is in Λ for every $a \in E'$. Define $\Lambda\{E\}$ to be the space of all E valued sequences $x = (x_n)$ such that the scalar sequence $(p(x_n))$ is in Λ for every continuous seminorm p on E. The spaces $\Lambda(E)$ and $\Lambda\{E\}$ are topologized using the topology of E and a certain collection \mathscr{M} of bounded subsets of Λ^x , the α -dual of Λ .

The criteria for bounded sets, compact sets, and completeness are similar for both spaces. The significant difference lies in the duality theory. The dual of $\Lambda(E)_{\mathscr{M}}$ is difficult to represent, but the dual of $\Lambda\{E\}_{\mathscr{M}}$ is shown to be easily representable for general Λ and E. For many special cases of Λ and E the dual of $\Lambda\{E\}_{\mathscr{M}}$ is of the form $\Lambda^{x}\{E'\}$ where Λ^{x} is the α - dual of Λ and E' is the strong dual of E.

We begin by recalling basic definitions and elementary facts about sequence spaces and establishing some notation. After defining the space $[\Lambda\{E\}_{\mathscr{M}}]$ and deriving some elementary properties, we proceed to a description of its dual space. We show that the notion of a "fundamentally Λ -bounded" space E provides sufficient conditions for the duality relationship $\Lambda\{E\}' = \Lambda^{x}\{E\}$. We next show that there are large classes of Λ and E satisfying these conditions and we conclude by applying our results to the case $\Lambda = l^{p}$ obtain, for example, that the strong dual of $l^{p}\{E\}$ is $l^{q}\{E'\}$ for E a normed, Frechet, or (DF)space, $1 \leq p < \infty$, $p^{-1} + q^{-1} = 1$.

I would like to thank Professor G. M. Köthe for his encouragement during the preparation of this work.

2. Definitions and notations. A sequence space Λ is a vector space of real or complex sequences with the usual coordinatewise operations. To each sequence space Λ there corresponds another sequence space Λ^x , called the α - dual of of Λ , consisting of all $\alpha = (\alpha_n)$, such that the scalar products $\langle \alpha, \beta \rangle = \sum \alpha_n \beta_n$ converge absolutely, that is $\sum |\alpha_n \beta_n| < \infty$, for all β in Λ . Letting Λ^{zz} denote the α - dual of