THE NORM OF A CERTAIN DERIVATION

CHARLES A. MCCARTHY

J. C. Stampfli has asked whether the norm of the derivation $\mathfrak{Q}_T: A \to TA - AT$ as a mapping of the subalgebra \mathfrak{A} of $\mathfrak{B}(H)$ into $\mathfrak{B}(H)$ is given by $\inf\{2 \mid |T - A'||: A' \in \mathfrak{A}'\}$. That this need not be the case is shown through an example in 4×4 matrices.

H is a Hilbert space. $\mathfrak{B}(H)$ is the algebra of all bounded linear operators on *H*. \mathfrak{A} is a subalgebra of $\mathfrak{B}(H)$ and \mathfrak{A}' is the commutant of \mathfrak{A} .

In [6], J. C. Stampfli proved that the norm of \mathfrak{Q}_T as a mapping of $\mathfrak{B}(H)$ into itself is precisely 2 $\inf_{\lambda} || T - \lambda ||$. Thus the question about $||\mathfrak{Q}_T||$ as a mapping from \mathfrak{A} to $\mathfrak{B}(H)$ naturally arises. In addition, Kadison, Lance, and Ringrose [2, Theorem 3.1] show that if $T = T^*$ and \mathfrak{Q}_T maps \mathfrak{A} into itself, then $||\mathfrak{Q}_T|| = \inf\{2||T - A'||: A' \in \mathfrak{A}'\}$. Our example will have T self-adjoint, which shows that their hypothesis $\mathfrak{Q}_T(\mathfrak{A}) \subset \mathfrak{A}$ is not inessential.

For our example, we take H to be complex four-dimensional Hilbert spaces; elements of H are to be thought of as column 4vectors, and elements of $\mathfrak{B}(H)$ as 4×4 matrices. We take \mathfrak{A} to be the subalgebra of diagonal matrices, so $\mathfrak{A}' = \mathfrak{A}$.

For T we take the Hermitian matrix

$$T = \frac{1}{12} \begin{vmatrix} 1 & -4 & \frac{1}{\sqrt{14}}(-5+6i\sqrt{3}) & \frac{1}{\sqrt{14}}(-5-6i\sqrt{3}) \\ -4 & 4 & -2\sqrt{14} & -2\sqrt{14} \\ \frac{1}{\sqrt{14}}(-5-6i\sqrt{3}) & -2\sqrt{14} & \frac{7}{2} & \frac{1}{14}(-95+12i\sqrt{3}) \\ \frac{1}{\sqrt{14}}(-5+6i\sqrt{3}) & -2\sqrt{14} & \frac{1}{14}(-95-12i\sqrt{3}) & \frac{7}{2} \end{vmatrix}$$

T is of the form P-Q where P and Q are self-adjoint projections. The range of P is two-dimensional and is spanned by the orthogonal unit vectors

$$p^{(1)} = \frac{1}{2\sqrt{3}} \left(1, -1 + i\sqrt{3}, \frac{1}{\sqrt{14}} (4 - 5i\sqrt{3}), \frac{1}{\sqrt{14}} (-2 + i\sqrt{3}) \right),$$
$$p^{(2)} = \frac{1}{2\sqrt{3}} \left(1, -1 - i\sqrt{3}, \frac{1}{\sqrt{14}} (-2 - i\sqrt{3}), \frac{1}{\sqrt{14}} (4 + 5i\sqrt{3}) \right);$$

the range of Q is one-dimensional and is spanned by the unit vector