# LINEAR OPERATORS FOR WHICH $T^{*} T$ AND $T T^{*}$ COMMUTE (II) 

Stephen L. Campbell

Let $(B N)$ denote the class of all bounded linear operators on a Hilbert space such that $T^{*} T$ and $T T^{*}$ commute. Let $(B N)^{+}$be those $T \in(B N)$ which are hyponormal. Embry has observed that if $T \in(B N)$, then $0 \in W(T)$ or $T$ is normal. This is used to show that if $T \in(B N)$, then $(T+\lambda I) \notin(B N)$ unless $T$ is normal. It is also shown that if $T \in(B N)^{+}$, then $T^{n}$ is hyponormal for $n \geqq 1$. An example of a $T \in(B N)^{+}$ such that $T^{2} \notin(B N)$ is given. Paranormality of operators in $(B N)$ is shown to be equivalent to hyponormality. The relationship between $T$ being in ( $B N$ ) and $T$ being centered is discussed. Finally, all $3 \times 3$ matrices in ( $B N$ ) are characterized.

This paper is a continuation of [3]. In that paper we studied bounded linear operators $T$ acting on a separable Hilbert space $/$ such that $T^{*} T$ and $T T^{*}$ commute. Such operators are called bi-normal and the class of all such operators is denoted $(B N)$. This paper will explore some of the properties of hyponormal bi-normal operators. In addition, we will show that no translate of a nonnormal bi-normal operator is bi-normal and characterize all $2 \times 2$ and $3 \times 3$ bi-normal matrices.

It has been pointed out to the author that the term bi-normal has been used earlier by Brown [2]. However, his usage does not appear to be in the current literature so we will continue to use bi-normal for operators in ( $B N$ ).

1. All shifts, weighted and unweighted, bilateral and unilateral, are in $(B N)$. Further, operators in ( $B N$ ), if completely nonnormal, have a tendency to be "shift-like". Our first result, due to Embry, is an example of this.

Theorem 1. If $T \in(B N)$, then either $T$ is normal or zero is in the interior of the numerical range of $T, W(T)$.

Proof. Embry has shown that if $T \in(B N)$ and $T$ is not normal, then $0 \in W(T)$ [7, Theorem 1]. She has also shown that if $T \in(B N)$ and $T+T^{*} \geqq 0$, then $T$ is normal [5, Theorem 2]. Thus if 0 were on the boundary of $W(T)$, by a suitable choice of $\alpha,|\alpha|=1$, we could consider $T_{1}=\alpha T$ where $T_{1} \in(B N)$ and $T_{1}+T_{1}^{*} \geqq 0$. Then $T$ would be normal.

