ON THE DIMENSION OF MODULES AND ALGEBRAS (III)

GLOBAL DIMENSION¹⁾

MAURICE AUSLANDER

Let Λ be a ring with unit. If A is a left Λ -module, the *dimension* of A (notation: $1.\dim_{\Lambda} A$) is defined to be the least integer n for which there exists an exact sequence

 $0 \longrightarrow X_n \longrightarrow \ldots \longrightarrow X_0 \longrightarrow A \longrightarrow 0$

where the left Λ -modules X_0, \ldots, X_n are projective. If no such sequence exists for any n, then $\lim_{\Lambda} A = \infty$. The *left global dimension* of Λ is

l. gl. dim
$$\Lambda = \sup 1 \dim_{\Lambda} A$$

where A ranges over all left Λ -modules. The condition $1. \dim_{\Lambda} A < n$ is equivalent with $\operatorname{Ext}_{\Lambda}^{n}(A, C) = 0$ for all left Λ -modules C. The condition $1. \operatorname{gl}. \dim \Lambda < n$ is equivalent with $\operatorname{Ext}_{\Lambda}^{n} = 0$. Similar definitions and theorems hold for right Λ -modules.

In the first section of this paper it is shown that the global dimension of Λ is completely determined by the dimensions of the cyclic modules over Λ , i.e., the modules generated by a single element. In the next section the notion of *weak global dimension* of Λ (notation: w. gl. dim Λ) is introduced, and using the previous result it is proven that if Λ is both left and right Noetherian, then l. gl. dim $\Lambda = w$. gl. dim $\Lambda = r$. gl. dim Λ .

The rest of the paper, which is independent of the first two sections, is devoted to a study of the global dimension of semi-primary rings. The principal result here is that l. dim_A $\Gamma = l. gl. \dim \Lambda = w. gl. \dim \Lambda = r. gl. \dim \Lambda = r. dim_A \Gamma$, where $\Gamma = \Lambda/N$, N being the radical of Λ .

The definitions and notations employed in this paper are based on those

Received March 21, 1955.

¹⁾ Part of the work contained in this paper was done while the author was at the University of Chicago.