Differential and Integral Equations

ON SELF-SIMILAR SOLUTIONS OF THE THIN FILM EQUATION WHEN n = 3

S.P. Hastings

Mathematics Department, University of Pittsburgh, Pittsburgh, PA 15260

L.A. Peletier

Mathematical Institute, Leiden University, Leiden, The Netherlands

1. Introduction. The motion of thin films in which the surface tension at the air/liquid interface determines the flow, is frequently described by the *Thin Film equation*

$$h_t + (h^n h_{xxx})_x = 0, \quad h \ge 0, \quad x \in \mathbf{R}, \ t > 0,$$
 (1.1)

in which h denotes the thickness of the film, t the time, x the distance along the film, and n is a *positive* constant, which depends on the type of flow considered.

In a Hele-Shaw flow between two parallel plates, the flow in a thin film spanned between the plates, separated by a distance b, is governed by the equations:

$$h_t + (hu)_x = 0$$
 Conservation of mass, (1.2)

$$u = -\frac{b^2}{12\mu}p_x \qquad \text{Darcy's Law} \tag{1.3}$$

Here u denotes the velocity of the fluid in the film, averaged over the thickness of the film, μ the viscosity of the fluid and p_x the pressure gradient along the film. If the flow is determined by the surface tension we may set to first approximation

$$p_x = -\gamma \kappa = -\gamma h_{xx},\tag{1.4}$$

where γ denotes the surface tension and κ the curvature of the surface. When we substitute (1.4) into (1.3), and the result into (1.2), we obtain

$$h_t + \frac{b^2 \gamma}{12\mu} (h \, h_{xxx})_x = 0, \tag{1.5}$$

Received for publication May 1996.

AMS Subject Classifications: 34B15, 34E05, 76D99.