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THE POINT OF POINTLESS TOPOLOGY1 

BY PETER T. JOHNSTONE 

Introduction. A celebrated reviewer once described a certain paper (in a 
phrase which never actually saw publication in Mathematical Reviews) as being 
concerned with the study of "valueless measures on pointless spaces". This 
article contains nothing about measures, valueless or otherwise; but I hope that 
by giving a historical survey of the subject known as "pointless topology" (i.e. 
the study of topology where open-set lattices are taken as the primitive notion) 
I shall succeed in convincing the reader that it does after all have some point to 
it. However, it is curious that the point (as I see it) is one which has emerged 
only relatively recently, after a substantial period during which the theory of 
pointless spaces has been developed without any very definite goal in view. I 
am sure there is a moral here; but I am not sure whether it shows that 
"pointless" abstraction for its own sake is a good thing (because it might one 
day turn out to be useful) or a bad thing (because it tends to obscure whatever 
point there might be in a subject). That much I shall leave for the reader to 
decide. 

This article is in the nature of a trailer for my book Stone spaces [35], and 
detailed proofs of (almost) all the results stated here will be found in the book 
(together with a much fuller bibliography than can be accommodated in this 
article). However, I should make it plain that I do not claim personal credit for 
more than a small proportion of these results, and that my own understanding 
of the nature of pointless topology has been enriched by my contacts with a 
number of other mathematicians, amongst whom I should particularly mention 
Bernhard Banaschewski, Michael Fourman, Martin Hyland, John Isbell, André 
Joyal and Myles Tierney. I should also mention the work of Bill Lawvere, 
particularly as reported in [41], on the nature of continuous variation and the 
conceptual relation between constant and variable quantities, which has had a 
profound influence on the developments which I wish to describe; but such 
questions as these will not be explicitly considered in the present article. 

1. Lattices and spaces. It is well known that Hausdorff [21] was the first 
mathematician to take the notion of open set (or neighbourhood) as primitive 
in the study of continuity properties in abstract spaces. (As Fingerman [14] has 
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