ON THE DETERMINANT OF AN AUTOMORPH OF A NONSINGULAR SKEW-SYMMETRIC MATRIX

JOHN WILLIAMSON
Let G be the skew-symmetric matrix of order $2 n$,

$$
G=\left(\begin{array}{cc}
0 & E_{n} \\
-E_{n} & 0
\end{array}\right)
$$

where E_{n} is the unit matrix of order n. If F is a matrix which satisfies

$$
\begin{equation*}
F G F^{\prime}=G \tag{1}
\end{equation*}
$$

then $|F|^{2}=1$, so that $|F|= \pm 1$. That $|F|=+1$ is well known and is in fact a consequence of a theorem of Frobenius.* A simple proof communicated to me by Professor Wintner depends on the polar factorization of F, which reduces the problem at once to the case in which F is orthogonal. This proof is, of course, not valid in any field. It is our intention here to give a simple direct proof, applicable in any field, of the fact that $|F|=+1$.

On writing F as a matrix of matrices of order $n, F=\left(F_{i j}\right),(i, j=1,2)$, we have, as a consequence of (1),

$$
\begin{align*}
& F_{11} F_{12}^{\prime}-F_{12} F_{11}^{\prime}=F_{21} F_{22}^{\prime}-F_{22} F_{21}^{\prime}=0 \\
& F_{11} F_{22}^{\prime}-F_{12} F_{21}^{\prime}=F_{22} F_{11}^{\prime}-F_{21} F_{12}^{\prime}=E_{n} \tag{2}
\end{align*}
$$

Let $\left|F_{11}\right| \neq 0$. Then

$$
F=\left(\begin{array}{ll}
F_{11} & F_{12} F_{11}^{\prime} \\
F_{21} & F_{22} F_{11}^{\prime}
\end{array}\right)\left(\begin{array}{cc}
E_{n} & 0 \\
0 & \left(F_{11}^{\prime}\right)^{-1}
\end{array}\right)
$$

On, applying (2), we have

$$
\begin{aligned}
\left|F_{11}^{\prime}\right||F| & =\left|\begin{array}{ll}
F_{11} & F_{12} F_{11}^{\prime} \\
F_{21} & F_{22} F_{11}^{\prime}
\end{array}\right|=\left|\begin{array}{ll}
F_{11} & F_{12} F_{11}^{\prime}-F_{11} F_{12}^{\prime} \\
F_{12} & F_{22} F_{11}^{\prime}-F_{21} F_{12}^{\prime}
\end{array}\right| \\
& =\left|\begin{array}{ll}
F_{11} & 0 \\
F_{21} & E_{n}
\end{array}\right|=\left|F_{11}\right| .
\end{aligned}
$$

[^0]
[^0]: * G. Frobenius, Ueber die schiefe Invariante einer bilinearen oder quadratischen Form, Journal für die reine und angewandte Mathematik, vol. 86 (1879), pp. 44-71; in particular, p. 48. See A. Wintner, On linear conservative dynamical systems, Annali di Matematica Pura ed Applicata, (4), vol. 13 (1934-1935), pp. 105-112.

