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\S 1, Introduction and the main result.

The Laurent expansion of the Riemann zeta function $\zeta(s)$ about the
pole can be written in the form, in [2],

(1) $\zeta(s)=\frac{1}{s-1}+\sum_{n=0}^{\infty}\frac{(-1)^{n}}{n!}\gamma_{n}(s-1)^{n}$

with

$\gamma_{n}=\lim_{N\rightarrow\infty}(\sum_{k=1}^{N}\frac{\log^{n}k}{k}-\frac{\log^{n+1}N}{n+1})$ .

Here $\log^{0}k$ mean 1 for all $k$ including $k=1$ . $\gamma_{0}$ is the well known Euler
constant, and, for $n\geqq 1,$ $\gamma_{n}$ , sometimes called generalized Euler constants,
have been studied by many authors ([1], Entry 13; or [3], p. 51). In this
paper we shall give an asymptotic expansion of $\gamma_{n}$ for arbitrary large $n$ ,
which yields some interesting results on $\gamma_{n}$ . They can be found in [4].

We begin by defining some notations. Let $N$ be a nonnegative
integel, and let $n$ be a positive integer. In order to write our theorem,
we need two functions $a=a(n)$ and $b=b(n)$ which are given by the
following lemma.

LEMMA 1. If $n>c_{1}$ , where $c_{1}$ is a sufficiently large constant, then
the system of the equations

(2) $-(n+1)\frac{y}{x^{2}+y^{2}}+\frac{1}{2}\pi-{\rm Im}\psi(x+iy)=0$ ,

(3) $-(n+1)\frac{x}{x^{2}+y^{2}}$ -log $2\pi+{\rm Re}\psi(x+iy)=0$ ,

with unknown $x$ and $y$ , satisfying $0<y<x$ and $n^{1/2}<x<n$ , has a unique
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