Токуо J. Матн. Vol. 25, No. 2, 2002

Isogenies of Degree *p* of Elliptic Curves over Local Fields and Kummer Theory

Mayumi KAWACHI

Tokyo Metropolitan University (Communicated by K. Nakamula)

Abstract. Let *p* be a prime number. In order to calculate the Selmer group of a *p*-isogeny $\nu : E \to E'$ of elliptic curves, we determine the image of a local Kummer map $E'(K)/\nu E(K) \to H^1(K, \ker \nu)$ over a finite extension *K* of \mathbf{Q}_p . We describe the image using a filtration on a unit group of a local field and the valuation of a coefficient of a leading term in a formal power series of an isogeny.

1. Introduction.

Let $\nu : E \to E'$ be an isogeny of elliptic curves over a number field \mathcal{K} . We are interested in its Selmer group Sel(ν) which is a subgroup of $H^1(\mathcal{K}, \ker \nu)$ generated by the elements whose local images in $H^1(\mathcal{K}_v, \ker \nu)$ are in Im δ_v for all primes v. Here δ_v is a connecting homomorphism of an exact sequence over \mathcal{K}_v

$$1 \longrightarrow \ker \nu \longrightarrow E \xrightarrow{\nu} E' \longrightarrow 1.$$

So δ_v fits in an exact sequence

$$1 \longrightarrow E'(\mathcal{K}_v)/\nu E(\mathcal{K}_v) \xrightarrow{\delta_v} H^1(\mathcal{K}_v, \ker v) \longrightarrow H^1(\mathcal{K}_v, E)$$

for each v. Let p be a prime number. We assume v is a p-isogeny, namely ker v is a group of order p. In order to study such Selmer group Sel(v), one of the difficult problems is to know Im δ_v for primes v over p. If E has good reduction at v and v does not divide p, then Im $\delta_v = H^1_{ur}(\mathcal{K}_v, \ker v)$, where $H^1_{ur}(\mathcal{K}_v, \ker v) = \ker(H^1(\mathcal{K}_v, \ker v)) \rightarrow H^1(\mathcal{K}_v^{ur}, \ker v))$. But if v divides p then the equation does not hold. This paper is devoted to the study of Im δ_v for v over p. In [1], Berkovič treated the case when E has a complex multiplication and $v \in \operatorname{End}(E)$, and expressed Im δ_v as a subgroup of $\mathcal{K}_v^{\times}/\mathcal{K}_v^{\times p}$, under the assumption $\mathcal{K}_v \supset \mu_p$ and $E(\mathcal{K}_v) \supset \ker v$. In this paper we treat the case when v is a general p-isogeny.

We also assume that $\mathcal{K}_v \supset \mu_p$ and $E(\mathcal{K}_v) \supset \ker v$. Let \mathcal{O}_v be the ring of integers of $\mathcal{K}_v, \mathfrak{M}_v$ the maximal ideal of \mathcal{O}_v and U the unit group of \mathcal{O}_v . Let $U^0 = U$ and $U^i = 1 + \mathfrak{M}_v^i$ for $i \ge 1$. This gives a filtration on the unit group of $\mathcal{K}_v, \mathcal{K}_v^{\times} \supset U^0 \supset U^1 \supset U^2 \supset \cdots$. It also induces a filtration $\mathcal{K}_v^{\times}/\mathcal{K}_v^{\times p} \supset C^0 \supset C^1 \supset \cdots \supset C^{pe_0+1} = \{1\}$, where $C^i = U^i/K^{\times p} \cap U^i$ for $i \ge 0$ and e_0 is the ramification index of \mathcal{K}_v over $\mathbf{Q}_p(\zeta_p)$. On the other hand let E

Received March 22, 2000; revised March 5, 2002