# Isogenies of Degree $p$ of Elliptic Curves over Local Fields and Kummer Theory 

Mayumi KAWACHI

Tokyo Metropolitan University
(Communicated by K. Nakamula)


#### Abstract

Let $p$ be a prime number. In order to calculate the Selmer group of a $p$-isogeny $v: E \rightarrow E^{\prime}$ of elliptic curves, we determine the image of a local Kummer map $E^{\prime}(K) / v E(K) \rightarrow H^{1}(K$, ker $v)$ over a finite extension $K$ of $\mathbf{Q}_{p}$. We describe the image using a filtration on a unit group of a local field and the valuation of a coefficient of a leading term in a formal power series of an isogeny.


## 1. Introduction.

Let $v: E \rightarrow E^{\prime}$ be an isogeny of elliptic curves over a number field $\mathcal{K}$. We are interested in its Selmer group $\operatorname{Sel}(\nu)$ which is a subgroup of $H^{1}(\mathcal{K}, \operatorname{ker} v)$ generated by the elements whose local images in $H^{1}\left(\mathcal{K}_{v}, \operatorname{ker} v\right)$ are in $\operatorname{Im} \delta_{v}$ for all primes $v$. Here $\delta_{v}$ is a connecting homomorphism of an exact sequence over $\mathcal{K}_{v}$

$$
1 \longrightarrow \operatorname{ker} v \longrightarrow E \xrightarrow{v} E^{\prime} \longrightarrow 1
$$

So $\delta_{v}$ fits in an exact sequence

$$
1 \longrightarrow E^{\prime}\left(\mathcal{K}_{v}\right) / \nu E\left(\mathcal{K}_{v}\right) \xrightarrow{\delta_{v}} H^{1}\left(\mathcal{K}_{v}, \text { ker } \nu\right) \longrightarrow H^{1}\left(\mathcal{K}_{v}, E\right)
$$

for each $v$. Let $p$ be a prime number. We assume $v$ is a $p$-isogeny, namely ker $v$ is a group of order $p$. In order to study such $\operatorname{Selmer} \operatorname{group} \operatorname{Sel}(\nu)$, one of the difficult problems is to know $\operatorname{Im} \delta_{v}$ for primes $v$ over $p$. If $E$ has good reduction at $v$ and $v$ does not divide $p$, then $\operatorname{Im} \delta_{v}=H_{u r}^{1}\left(\mathcal{K}_{v}, \operatorname{ker} v\right)$, where $H_{u r}^{1}\left(\mathcal{K}_{v}, \operatorname{ker} v\right)=\operatorname{ker}\left(H^{1}\left(\mathcal{K}_{v}, \operatorname{ker} v\right) \rightarrow H^{1}\left(\mathcal{K}_{v}^{u r}, \operatorname{ker} v\right)\right)$. But if $v$ divides $p$ then the equation does not hold. This paper is devoted to the study of $\operatorname{Im} \delta_{v}$ for $v$ over $p$. In [1], Berkovič treated the case when $E$ has a complex multiplication and $v \in \operatorname{End}(E)$, and expressed $\operatorname{Im} \delta_{v}$ as a subgroup of $\mathcal{K}_{v}^{\times} / \mathcal{K}_{v}^{\times p}$, under the assumption $\mathcal{K}_{v} \supset \mu_{p}$ and $E\left(\mathcal{K}_{v}\right) \supset$ ker $v$. In this paper we treat the case when $v$ is a general $p$-isogeny.

We also assume that $\mathcal{K}_{v} \supset \mu_{p}$ and $E\left(\mathcal{K}_{v}\right) \supset \operatorname{ker} v$. Let $\mathcal{O}_{v}$ be the ring of integers of $\mathcal{K}_{v}, \mathfrak{M}_{v}$ the maximal ideal of $\mathcal{O}_{v}$ and $U$ the unit group of $\mathcal{O}_{v}$. Let $U^{0}=U$ and $U^{i}=1+\mathfrak{M}_{v}^{i}$ for $i \geq 1$. This gives a filtration on the unit group of $\mathcal{K}_{v}, \mathcal{K}_{v}^{\times} \supset U^{0} \supset U^{1} \supset U^{2} \supset \cdots$. It also induces a filtration $\mathcal{K}_{v}^{\times} / \mathcal{K}_{v}^{\times p} \supset C^{0} \supset C^{1} \supset \cdots \supset C^{p e_{0}+1}=\{1\}$, where $C^{i}=U^{i} / K^{\times p} \cap U^{i}$ for $i \geq 0$ and $e_{0}$ is the ramification index of $\mathcal{K}_{v} \operatorname{over} \mathbf{Q}_{p}\left(\zeta_{p}\right)$. On the other hand let $E$

[^0]
[^0]:    Received March 22, 2000; revised March 5, 2002

