102. Some Properties of Porges' Functions

By Hiroshi IWATA

(Comm. by Kinjirô KUNUGI, M. J. A., June 10, 1969)

§ 1. Introduction. For fixed g and $s \in Z$,¹⁾ let f(n) be the sum of the sth powers of the digits in the scale of g of the natural number n. Porges [1], Isaacs [2], and Stewart [3] studied the properties of this function f(n). The sequence $\{f^k(n)\}_{k=0}^{\infty}$, where $f^0(n)=n$, and $f^k(n)$ $=f\{f^{k-1}(n)\}(k \in Z)$, is periodic for every $n \in Z$ (see [4]). K. Iséki [5], [6] reported all the periods for s=3, 4, 5, when g=10. Integers X and Y are said to be f-related if and only if there are non-negative integers l and m such that $f^l(X)=f^m(Y)$. Being f-related is an equivalence relation dividing Z into N disjoint sets of f-related integers (see [2]). Now let P(g) be the set of all the periods of the sequences $\{f^k(n)\}_{k=0}^{\infty}(n \in Z)$ and let M(g) be max $\{\overline{A} | A \in P(g)\}$, where \overline{A} is the number of elements of A when s=2. Then in the case of s=2, N=N(g)is obviously the number of the elements of P(g). In §2 we will prove the following

Theorem 1. $\overline{\lim_{g\to\infty}} M(g) = \infty$ (1),

and

Theorem 2. $\overline{\lim} N(g) = \infty$ (2).

When the circulation of $\{f^k(n)\}_{k=0}^{\infty}$ begins at k=k(n)th term, we get the sequence $\{h(n)\}_{n=1}^{\infty}$, where $h(n)=f^{k(n)}(n)$. In the case of (g, s)=(3, 2), as easily proved, $H=\{h(n) \mid n \in Z\}=\{1, 2, 4, 5, 8\}$. In §3, we will prove the following

Theorem 3. For every pair (a, l), where $a \in H$, $l \in Z$, there exist infinitely many natural numbers k such that $h(k)=h(k+2)=\cdots=h(k+2l-2)=a$,

Theorem 4. Let $1 \leq l \leq 5$. For a given repeated permutation $E = (\xi_1, \xi_2, \dots, \xi_l)$, where $\xi_{\nu} = 1$ or 5, there exist infinitely many numbers b such that $(h(b), h(b+2), \dots, h(b+2l-2) = (\xi_1, \xi_2, \dots, \xi_l)$,

Theorem 5. $(h(c), h(c+2), \dots, h(c+10) \neq (1, 5, 1, 1, 5, 1)$ for all $c \in \mathbb{Z}$ and

Theorem 6. Let T(l) denote the number of the repeated permutations $(\xi_1, \xi_2, \dots, \xi_l)$, where $\xi_{\nu} = 1$ or 5, which can be realized by infinitely many number of finite partial sequences consist of l consecutive terms of $\{h(2n-1)\}_{n=1}^{\infty}$, then

¹⁾ Z is the set of all natural numbers.