102. Some Properties of Porges' Functions

By Hiroshi Iwata
(Comm. by Kinjirô KunugI, m. J. A., June 10, 1969)

§ 1. Introduction. For fixed g and $s \in Z,{ }^{1)}$ let $f(n)$ be the sum of the s th powers of the digits in the scale of g of the natural number n. Porges [1], Isaacs [2], and Stewart [3] studied the properties of this function $f(n)$. The sequence $\left\{f^{k}(n)\right\}_{k=0}^{\infty}$, where $f^{0}(n)=n$, and $f^{k}(n)$ $=f\left\{f^{k-1}(n)\right\}(k \in Z)$, is periodic for every $n \in Z$ (see [4]). K. Iséki [5], [6] reported all the periods for $s=3,4,5$, when $g=10$. Integers X and Y are said to be f-related if and only if there are non-negative integers l and m such that $f^{l}(X)=f^{m}(Y)$. Being f-related is an equivalence relation dividing Z into N disjoint sets of f-related integers (see [2]). Now let $P(g)$ be the set of all the periods of the sequences $\left\{f^{k}(n)\right\}_{k=0}^{\infty}(n \in Z)$ and let $M(g)$ be $\max \{\bar{A} \mid A \in P(g)\}$, where \bar{A} is the number of elements of A when $s=2$. Then in the case of $s=2, N=N(g)$ is obviously the number of the elements of $P(g)$. In § 2 we will prove the following

Theorem 1. $\varlimsup_{g \rightarrow \infty} M(g)=\infty \quad$ (1), and

Theorem 2. $\varlimsup_{g \rightarrow \infty} N(g)=\infty$
When the circulation of $\left\{f^{k}(n)\right\}_{k=0}^{\infty}$ begins at $k=k(n)$ th term, we get the sequence $\{h(n)\}_{n=1}^{\infty}$, where $h(n)=f^{k(n)}(n)$. In the case of $(g, s)=(3,2)$, as easily proved, $H=\{h(n) \mid n \in Z\}=\{1,2,4,5,8\}$. In $\S 3$, we will prove the following

Theorem 3. For every pair (a, l), where $a \in H, l \in Z$, there exist infinitely many natural numbers k such that $h(k)=h(k+2)=\cdots=h(k$ $+2 l-2)=a$,

Theorem 4. Let $1 \leqq l \leqq 5$. For a given repeated permutation $E=\left(\xi_{1}, \xi_{2}, \cdots, \xi_{l}\right)$, where $\xi_{\nu}=1$ or 5 , there exist infinitely many numbers b such that $\left(h(b), h(b+2), \cdots, h(b+2 l-2)=\left(\xi_{1}, \xi_{2}, \cdots, \xi_{l}\right)\right.$,

Theorem 5. ($h(c), h(c+2), \cdots, h(c+10) \neq(1,5,1,1,5,1)$ for all $c \in Z$ and

Theorem 6. Let $T(l)$ denote the number of the repeated permutations $\left(\xi_{1}, \xi_{2}, \cdots, \xi_{l}\right)$, where $\xi_{\nu}=1$ or 5 , which can be realized by infinitely many number of finite partial sequences consist of l consecutive terms of $\{h(2 n-1)\}_{n=1}^{\infty}$, then

[^0]
[^0]: 1) Z is the set of all natural numbers.
