On partitions, surjections, and Stirling numbers

Peter Hilton, Jean Pedersen and Jürgen Stigter

1 Introduction

The connection between $P(m, n)$, the number of partitions of a set containing m elements as a disjoint union of n non-empty subsets; $S(m, n)$, the number of surjections of a set of m elements onto a set of n-elements; and $S t(m, n)$, the Stirling number of the second kind, given by ${ }^{1}$

$$
\begin{equation*}
S t(m, n)=\frac{1}{n!} \sum_{r=0}^{n}(-1)^{n-r}\binom{n}{r} r^{m} \tag{1.1}
\end{equation*}
$$

has long been known (see, eg, $[B, C, L, T]$). Indeed, their mutual relation is given by

$$
\begin{equation*}
\frac{1}{n!} S(m, n)=P(m, n)=S t(m, n) \tag{1.2}
\end{equation*}
$$

the first equality being very elementary and the second somewhat less immediate.

Our primary object in this paper is to provide an explicit formula for $\operatorname{St}(m, n)$, and hence, by (1.2), for $P(m, n)$ and $S(m, n)$, in the case that $m>n$.

[^0]
[^0]: ${ }^{1}$ Other definitions are given in the litterature; for example, $\operatorname{St}(m, n)$ is characterized by the equation

 $$
 x^{m}=\sum_{n=0}^{m} n!S t(m, n)\binom{x}{n} .
 $$

 Received by the editors November 1993
 Communicated by A. Warrinier

