Asymptotic properties of Abelian integrals arising in quadratic systems*

Henryk Żołạdek

Abstract

We consider quadratic perturbations of the vector field $\left(-y+a x^{2}+b y^{2}\right) \partial_{x}+$ $x(1+c y) \partial_{y}$ and study its limit cycles via Abelian integrals. The asymptotic analysis suggests that such systems have no more than 4 limit cycles.

1 Introduction

The 16-th Hilbert problem is to find a bound $N(n)$ for the number of limit cycles of planar vector fields of degree n. Even for quadratic systems the answer is unknown. There are examples [2], [9] of quadratic systems with 4 limit cycles. In the present paper the author examines the possibility of finding quadratic systems with >4 limit cycles in one specific situation.

We consider the vector field

$$
\begin{equation*}
\dot{x}=-y+a x^{2}+b y^{2}, \dot{y}=x(1+c y), c \leq 0 \tag{1}
\end{equation*}
$$

which is time-reversible, (invariant under $(x, y, t) \rightarrow(-x, y-t)$), and has two centers: $x=y=0$ and $x=0, y=1 / b$, (see below). One can check that the center $(0,0)$ has cyclicity 2 for $3 a+5 b \neq c$ and 3 for $3 a+5 b=c$, (see Section 5 below). The other center also has cyclicity 2 or 3 . It seems that the configuration with 3 limit cycles around one focus and 2 cycles around the other focus for a perturbation of (1) is possible.

[^0]
[^0]: *The original version of this paper was submitted for the Proceedings of the 1992 Diepenbeek Conference on Bifurcations in Differentiable Dynamics

 Received by the editors February 1999.
 Communicated by F. Dumortier.
 1991 Mathematics Subject Classification : 54C04, 58F36.

