On the Derivations of Lie Algebras

By

Shigeaki TÔGÔ

(Received Feb. 25, 1955)

1. Introduction

Let \mathfrak{L} , \mathfrak{M} be Lie algebras over a field K of characteristic 0. A linear mapping D of \mathfrak{L} into \mathfrak{M} is called a derivation of \mathfrak{L} into \mathfrak{M} if $D(x \circ y) = D(x) \circ y + x \circ D(y)$ for all x, y in \mathfrak{L} . A derivation of \mathfrak{L} into itself is simply called a derivation of \mathfrak{L} . The set $\mathfrak{D}(\mathfrak{L})$ of all derivations of \mathfrak{L} forms a Lie algebra with the commutator product $D_1 \circ D_2 = D_2 D_1 - D_1 D_2$, which is called the derivation algebra of \mathfrak{L} . For any element x of \mathfrak{L} , the adjoint mapping $D_x: y \to y \circ x$ is a derivation of \mathfrak{L} . Such a derivation is called inner. It is easy to see that the inner derivations of \mathfrak{L} form an ideal in $\mathfrak{D}(\mathfrak{L})$ which we denote by $\mathfrak{F}(\mathfrak{L})$. Let \mathfrak{L}_1 be a subalgebra of \mathfrak{L} . We shall denote by $D|\mathfrak{L}_1$ the restriction to \mathfrak{L}_1 of a derivation D of \mathfrak{L} and, for any subset \mathfrak{L} of $\mathfrak{D}(\mathfrak{L})$, denote by $\mathfrak{L}|\mathfrak{L}_1$ the set of $D|\mathfrak{L}_1$ for all D in \mathfrak{L} . A subset of \mathfrak{L} is called characteristic if it is mapped into itself by every derivation of \mathfrak{L} . The radical \mathfrak{R} of \mathfrak{L} is a characteristic ideal \mathfrak{L} so that $\mathfrak{D}(\mathfrak{L})|\mathfrak{R}$ is a subalgebra of $\mathfrak{D}(\mathfrak{R})$. If there exists a subalgebra \mathfrak{L}_2 such that $\mathfrak{L}=\mathfrak{L}_1+\mathfrak{L}_2$ and $\mathfrak{L}_1\cap\mathfrak{L}_2=0$, then we say that \mathfrak{L} splits over \mathfrak{L}_1 and that \mathfrak{L}_2 is a complement of \mathfrak{L}_1 in \mathfrak{L} .

The purpose of this paper is to study the relations between the derivation algebras of Lie algebras and their radicals. By a well-known theorem of E. Cartan, every derivation of a semi-simple Lie algebra is an inner derivation. We give a necessary and sufficient condition for a derivation of $\mathfrak L$ to be inner (Theorem 1) and show that every derivation of $\mathfrak L$ is inner if and only if $\mathfrak D(\mathfrak L)|\mathfrak R=\mathfrak J(\mathfrak L)|\mathfrak R$ (Theorem 2). Recently G. F. Leger [5] has proved that, if $\mathfrak D(\mathfrak R)$ splits over $\mathfrak J(\mathfrak R)$, $\mathfrak D(\mathfrak L)$ splits over $\mathfrak J(\mathfrak L)$. We show that, in order that $\mathfrak D(\mathfrak L)$ may split over $\mathfrak J(\mathfrak L)$, each of the following conditions is necessary and sufficient: (1) $\mathfrak D(\mathfrak L)|\mathfrak R$ splits over $\mathfrak J(\mathfrak L)|\mathfrak R$; (2) $\mathfrak D(\mathfrak L)|\mathfrak R$ splits over $\mathfrak J(\mathfrak R)$ (Theorem 3). We also generalize a result of G. Hochschild [2] and study the derivation algebras of reductive Lie algebras.