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1. Introduction

Let ¥, I be Lie algebras over a field K of characteristic 0. A linear
mapping D of € into M is called a derivation of & into M if D (x-y)=
D{(x)ey +x°D(y) for all x, y in & A derivation of £ into itself is simply
called a derivation of €. The set ©(Y¥) of all derivations of & forms a Lie
algebra with the commutator product DyeDs= D; D, — D1 D,, which is called the
derivation algebra of €.  For any element x of &, the adjoint mapping
D,:y—yex is a derivation of Q. Such a derivation is called inner. It is
easy to see that the inner derivations of & form an ideal in T(Y) which we
denote by J(¥). Let &; be a subalgebra of €& We shall denote by D|%; the
restriction to ¥; of a derivation D of € and, for any subset & of D (), denote
by €|¥, the set of D|¥; for all D in €. A subset of € is called characteristic
if it is mapped into itself by every derivation of £. The radical R of & is
a characteristic ideal [2] so that D ()| is a subalgebra of D(R). If there
exists a subalgebra £, such that =g, + €; and &% =0, then we say that
¢ splits over &; and that &, is a complement of &; in £

The purpose of this paper is to study the relations between the derivation
algebras of Lie algebras and their radicals. By a well-known theorem of E.
Cartan, every derivation of a semi-simple Lie algebra is an inner derivation.
We give a necessary and sufficient condition for a derivation of £ to be inner
(Theorem 1) and show that every derivation of & is inner if and only if
DR =J(Y|R (Theorem 2). Recently G. F. Leger [5] has proved that, if
DR) splits over J(R), D(L) splits over J(¢). We show that, in order that
D (L) may split over J(¥), each of the following conditions is necessary and
sufficient : (1) D) R splits over J@)[R; (2) DE)|R splits over J(R)
(Theorem 3). We also generalize a result of G. Hochschild [2] and study the

derivation algebras of reductive Lie algebras.



