# Injective spectra with respect to the $\boldsymbol{K}$-homologies 

Zen-ichi Yosimura

(Received February 15, 1991)

## §0. Introduction

Given a $C W$-spectrum $E$ we call a $C W$-spectrum $W E_{*}$-injective if any map $f: X \rightarrow Y$ induces an epimorphism $f^{*}:[Y, W] \rightarrow[X, W]$ whenever $f_{*}: E_{*} X$ $\rightarrow E_{*} Y$ is a monomorphism [12, Definition 1 i)]. The well known ring spectra $E=S, H Z / p, M O, M U, M S_{p}, K U, K O$ and $K T$ satisfy some of nice properties as stated in [1] or [2]. For example, $E_{*} E$ is flat as an $E_{*}$-module, and the product map $v_{E, F}: E_{*} E \underset{E_{*}}{\otimes} \pi_{*} F \rightarrow E_{*} F$ is an isomorphism for any $E$-module spectrum $F$. Then $E_{*} X$ may be regarded as a comodule over the coalgebra $E_{*} E$. For such a nice ring spectrum $E$ we gave the following characterization in [17].

Theorem 1. Let E be a ring spectrum satisfying the above two properties. For a CW-spectrum $W$ the following conditions are equivalent:
i) $W$ is an $E_{*}$-injective spectrum,
ii) $W$ is an $E_{*}$-local spectrum such that $E_{*} W$ is injective as an $E_{*} E$-comodule, and
iii) the canonical morphism $\kappa_{E}:[X, W] \longrightarrow \operatorname{Hom}_{E_{*} E}\left(E_{*} X, E_{*} W\right)$ is an isomorphism for any $C W$-spectrum $X$.

In this note we study $K_{*}^{\mathscr{C}}$-injective spectra for $K^{\mathscr{C}}=K U \vee K O \vee K T$, $K U \vee K O, K U \vee K T, K O \vee K T, K U, K O$ and $K T$ where $K U, K O$ and $K T$ denote the complex, the real and the self-conjugate $K$-spectrum respectively. In particular, we give a $K_{*}^{\mathscr{G}}$-version of Theorem 1 as our main result (see Theorem 2 below). For our purpose we use the Bousfield's abelian categories $C R T$ and $A C R T$ [9, 2.1 and 5.5] whose objects $M=\left\{M^{C}, M^{R}, M^{T}\right\}$ are modelled on the united $K$-homologies $K_{*}^{C R T} X=\left\{K U_{*} X, K O_{*} X, K T_{*} X\right\}$ for any $C W$-spectra $X$, although our category $A C R T$ is somewhat different from the Bousfield's one.

In $\S 1$ we first recall the abelian category $C R T$ and then state several homological properties of $C R T$ established in [ $9, \S 2$ and §3] for later use. In $\S 2$ we introduce the abelian categories $\mathscr{C}=C R, C T, R T, C, R$ and $T$ whose objects $M=\left\{M^{H}\right\}$ are obtained by restricting their namesakes in CRT, of which $C R$ and $C$ have already been done in [9, 4.1 and 4.7]. In $\S 3$ we give

