Some Z_q-Equivariant Immersions

Dedicated to Professor Kiiti Morita on his 60th birthday

Teiichi KOBAYASHI (Received January 14, 1976)

§ 1. Introduction

Let q be an integer and Z_q be the cyclic group of order q. A C^{∞} -differentiable immersion / of a Z_q -manifold in another Z_q -manifold is called a Z_q -equivariant immersion (or simply a Z_q -immer sion) if f is a Z_q -equivariant map. The purpose of this note is to study the conditions for the existence of some Z_q -equivariant immersions.

Let m and k be non-negative integers, and R^{m+2k} be Euclidean (m+2k)-space. Let $R^{m,2k}$ be the Z_q -manifold (R^{m+2k}, Z_q) with the action

$$\mu: Z_a \times R^{m+2k} \longrightarrow R^{m+2k}$$

defined by

$$\mu(T, (t_1, \ldots, t_m, z_{m+1}, \ldots, z_{m+k})) = (t_1, \ldots, t_m, Tz_{m+1}, \ldots, Tz_{m+k}),$$

where $T(=e^{2\pi\sqrt{-1}/q})$ is the generator of Z_q , $t_1,...,t_m$ are real numbers $(\in R)$, and $z_{m+1},...,z_{m+k}$ are complex numbers $(\in C=R^2)$.

Let S^{2n+1} be the unit (2n+1)-sphere in complex (n+1)-space C^{n+1} . Let (S^{2n+1}, Z_q) be the Z_q -manifold defined by the action

$$v: Z_q \times S^{2n+1} \longrightarrow S^{2n+1}; v(T, (z_0,..., z_n)) = (Tz_0,..., Tz_n),$$

where $z_0,...,z_n$ are complex numbers with $\sum_{j=0}^n |z_j|^2 = 1$ The action v is free and differentiable of class C^{∞} . The orbit manifold S^{2n+1}/Z_q is the standard lens space $L^n(q) \mod q$.

A. Jankowski obtained in [7] some non-existence theorems for \mathbb{Z}_2 -immersions. In this note we consider \mathbb{Z}_q -immersions $(S^{n+1}, \mathbb{Z}_q) \to R^{m,2k}$, and study the bounds of m for fixed k and n.

As is easily seen, there is a Z_q -immersion of (S^{2n+1}, Z_q) in $R^{m,0}$ if and only if there is an immersion of $L^n(q)$ in R^m .

If k > n, (S^{2n+1}, Z_q) is Z_q -immersible in R^{m-2k} for any m, clearly. In case $k \le n$, we have the following results.

THEOREM 1. Let q be an integer > 1. Then (S^{2n+1}, Z_q) is not Z_q -immer-