A Note on Finite Groups which Act Freely on Closed Surfaces II*

Kensô Fujii

(Received April 28, 1976)

§1. Introduction

This note is a continuation of the previous note [2].

Let T_m or U_m be the orientable or non-orientable closed surface of genus m. In [2], we studied finite groups which act freely on the Klein bottle U_2 and the torus T_1 , and on T_m preserving the orientation. In this note, we study what kind of finite groups can act freely on U_m , and on T_m reversing the orientation. Here we say that a finite group G acts on T_m reversing the orientation if some element of G reverses the orientation of T_m .

Let F_n be the free group generated by x_1, \ldots, x_n , and set $s_n = \prod_{i=1}^n x_i^2 \in F_n$. We say that an element w of F_n is even if w is a product of even times of generators, i.e., a form $\prod_{j=1}^{2k} x_{ij}$, and is odd if it is not even; and also a subgroup K of F_n is even if any element of K is even, and is odd if it is not even. Also we denote by *G the order of a finite group G. Then we have the following propositions.

PROPOSITION 1.1 (cf. [2, Prop. 3.2]). (i) A finite group G acts freely on T_m reversing the orientation if and only if there exists an even normal subgroup K of F_n such that

(1.2)
$$G \cong F_n/K, \quad K \ni s_n, \quad 2(1-m) = (2-n)(*G).$$

For this case, the orbit surface T_m/G is homeomorphic to U_n .

(ii) A finite group G acts freely on U_m if and only if there exists an odd normal subgroup K of F_n such that

(1.3)
$$G \cong F_n/K, \quad K \ni s_n, \quad 2-m = (2-n)(*G).$$

For this case, U_m/G is homeomorphic to U_n .

PROPOSITION 1.4 (cf. [2, Prop. 3.3]). (i) Let G be a finite 2-group and assume that the minimum number of generators of G is n. Then G acts freely on T_m reversing the orientation, where m=1+(n-1)(*G).

(ii) Let G be a finite group and assume that the number of generators of G is less than n+1. Then G acts freely on U_m , where m=2+(2n+l-2)(*G)

^{*} This paper was partially supported by Yukawa fellowship.