Note on KO-Rings of Lens Spaces Mod 2^r

Teiichi KOBAYASHI and Masahiro SUGAWARA (Received August 26, 1977)

§1. Introduction

Let η be the canonical complex line bundle over the standard lens space mod p^r :

 $L^{n}(p^{r}) = S^{2n+1}/Z_{p^{r}}$ (p: prime, $r \ge 1$; $n \ge 0$).

Then, we have the stable classes

(1.1)
$$\sigma = \eta - 1 \in \widetilde{K}(L^n(p^r)), \quad r\sigma = r\eta - 2 \in \widetilde{KO}(L^n(p^r)),$$

where r is the real restriction. On the orders of the powers of these elements, the following results are proved in [1, Th. 1.1]:

- (1.2) $\sigma^i \in \widetilde{K}(L^n(p^r))$ is of order $p^{r+\lfloor (n-i)/(p-1) \rfloor}$ for $1 \leq i \leq n$, and $\sigma^{n+1} = 0$.
- (1.3) If p is an odd prime, then $(r\sigma)^i \in \widetilde{KO}(L^n(p^r))$ is of order $p^{r+\lfloor (n-2i)/(p-1) \rfloor}$ for $1 \leq i \leq \lfloor n/2 \rfloor$, and $(r\sigma)^{\lfloor n/2 \rfloor+1} = 0$.

The purpose of this note is to prove the following theorem, by using the partial result of M. Yasuo [5, Prop. (3.5)] which shows the theorem under the assumption $n \neq 1$ (4):

THEOREM 1.4. In the reduced KO-group $\widetilde{KO}(L^n(2^r))$ $(r \ge 2)$, the order of $(r\sigma)^i$ is equal to

$$2^{r+n-2i+1} \text{ if } n \equiv 0 (2), \quad 2^{r+n-2i} \quad \text{if } n \equiv 1 (2), \quad \text{for } 1 \leq i \leq \lfloor n/2 \rfloor;$$

$$1 \quad \text{if } n \neq 1 (4), \quad 2 \quad \text{if } n \equiv 1 (4), \quad \text{for } i = \lfloor n/2 \rfloor + 1;$$

$$\text{for } i \geq \lfloor n/2 \rfloor + 2$$

and 1 for $i \ge [n/2] + 2$.

As an application of this theorem, we have the following corollary by the method of M. F. Atiyah using the γ -operation.

COROLLARY 1.5 (cf. [3, Th. C, Prop. 7.6]). The (2n+1)-manifold $L^{n}(2^{r})$ $(r \ge 2)$ cannot be immersed in the Euclidean space R^{2n+2L} and cannot be imbedded in $R^{2n+2L+1}$, where