HIROSHIMA MATH. J. 10 (1980), 141–152

Extremal solutions of general nonlinear differential equations

Kurt KREITH and Takasi KUSANO (Received August 21, 1979)

Recently, one of the present authors [4] has studied various forms of maximal and minimal asymptotic behavior of positive solutions of the nonlinear differential equations

$$y^{(n)} + f(t, y) = 0, \quad y^{(n)} - f(t, y) = 0.$$

This paper extends the results of [4] to much more general differential equations of the form

(1⁺)
$$L_n y + f(t, y) = 0$$

(1⁻)
$$L_n y - f(t, y) = 0$$

where $n \ge 2$ and

(2)
$$L_n = \frac{1}{p_n(t)} \frac{d}{dt} \frac{1}{p_{n-1}(t)} \frac{d}{dt} \cdots \frac{d}{dt} \frac{1}{p_1(t)} \frac{d}{dt} \frac{\cdot}{p_0(t)}.$$

It also establishes criteria for the absence of various forms of asymptotic behavior among the eventually positive solutions of (1^+) and (1^-) and, in some cases, the complete absence of eventually positive solutions.

We always assume that:

(3)
(a)
$$p_i \in C([a, \infty), (0, \infty)), \quad 0 \le i \le n;$$

(b) $f \in C([a, \infty) \times (0, \infty), (0, \infty)).$

We introduce the notation:

(4)
$$L_0 y(t) = \frac{y(t)}{p_0(t)}, \quad L_i y(t) = \frac{1}{p_i(t)} \frac{d}{dt} L_{i-1} y(t), \quad 1 \le i \le n.$$

The domain $\mathscr{D}(L_n)$ of L_n is defined to be the set of all functions $y: [T_y, \infty) \to R$ such that $L_i y(t), 0 \le i \le n$, are continuous on $[T_y, \infty)$. By a positive solution of $(1^+) [(1^-)]$ we mean a function $y \in \mathscr{D}(L_n)$ which satisfies $(1^+) [(1^-)]$ and is positive for all sufficiently large t.