Нігозніма Матн. J. 10 (1980), 391–408

Asymptotic analysis of odd order ordinary differential equations

Kyoko TANAKA (Received January 14, 1980)

1. Introduction

In this paper we consider the differential equations

$$L_n x + q(t) x = 0,$$

(2)
$$L_n x + q(t)f(t, x) = 0,$$

where $n \ge 3$ is an odd number and L_n is the differential operator of the form

(3)
$$L_n = \frac{1}{p_n(t)} \frac{d}{dt} \frac{1}{p_{n-1}(t)} \frac{d}{dt} \cdots \frac{d}{dt} \frac{1}{p_1(t)} \frac{d}{dt} \frac{\cdot}{p_0(t)}.$$

The following conditions are always assumed to hold:

(i) $p_i(t) \ (0 \le i \le n)$ and q(t) are continuous and positive on the interval $[a, \infty)$, and

$$\int_a^\infty p_i(t)dt = \infty \quad \text{for} \quad 1 \le i \le n-1.$$

(ii) f(t, x) is continuous on $[a, \infty) \times R$, f(t, x) is nondecreasing in x and xf(t, x) > 0 for $x \neq 0$.

We introduce the notation:

 $D_{0}^{0}(x;p_{0})(t) = \frac{x(t)}{p_{0}(t)},$

$$D^{j}(x; p_{0}, ..., p_{j})(t) = \frac{1}{p_{j}(t)} \frac{d}{dt} D^{j-1}(x; p_{0}, ..., p_{j-1})(t), \quad 1 \le j \le n.$$

Then the differential operator L_n can be rewritten as

$$L_n = D^n(\cdot; p_0, \ldots, p_n).$$

The domain $\mathscr{D}(L_n)$ of L_n is defined to be the set of all functions $x: [T_x, \infty) \to R$ such that $D^j(x; p_0, ..., p_j)(t) \ (0 \le j \le n)$ exist and are continuous on $[T_x, \infty)$.

A nontrivial solution of (1) (or (2)) is called oscillatory if the set of its zeros is infinite. Otherwise, it is called nonoscillatory. A nontrivial solution x(t) of (1) (or (2)) is said to be strongly decreasing if it satisfies