Asymptotic analysis of odd order ordinary differential equations

Kyoko Tanaka

(Received January 14, 1980)

1. Introduction

In this paper we consider the differential equations

$$
\begin{align*}
& L_{n} x+q(t) x=0, \tag{1}\\
& L_{n} x+q(t) f(t, x)=0 \tag{2}
\end{align*}
$$

where $n \geq 3$ is an odd number and L_{n} is the differential operator of the form

$$
\begin{equation*}
L_{n}=\frac{1}{p_{n}(t)} \frac{d}{d t} \frac{1}{p_{n-1}(t)} \frac{d}{d t} \cdots \frac{d}{d t} \frac{1}{p_{1}(t)} \frac{d}{d t} \frac{\cdot}{p_{0}(t)} . \tag{3}
\end{equation*}
$$

The following conditions are always assumed to hold:
(i) $p_{i}(t)(0 \leq i \leq n)$ and $q(t)$ are continuous and positive on the interval $[a, \infty)$, and

$$
\int_{a}^{\infty} p_{i}(t) d t=\infty \quad \text { for } \quad 1 \leq i \leq n-1 .
$$

(ii) $f(t, x)$ is continuous on [$a, \infty) \times R, f(t, x)$ is nondecreasing in x and $x f(t, x)>0$ for $x \neq 0$.

We introduce the notation:

$$
\begin{align*}
& D^{0}\left(x ; p_{0}\right)(t)=\frac{x(t)}{p_{0}(t)} \\
& D^{j}\left(x ; p_{0}, \ldots, p_{j}\right)(t)=\frac{1}{p_{j}(t)} \frac{d}{d t} D^{j-1}\left(x ; p_{0}, \ldots, p_{j-1}\right)(t), \quad 1 \leq j \leq n \tag{4}
\end{align*}
$$

Then the differential operator L_{n} can be rewritten as

$$
L_{n}=D^{n}\left(\cdot ; p_{0}, \ldots, p_{n}\right)
$$

The domain $\mathscr{D}\left(L_{n}\right)$ of L_{n} is defined to be the set of all functions $x:\left[T_{x}, \infty\right) \rightarrow R$ such that $D^{j}\left(x ; p_{0}, \ldots, p_{j}\right)(t)(0 \leq j \leq n)$ exist and are continuous on $\left[T_{x}, \infty\right)$.

A nontrivial solution of (1) (or (2)) is called oscillatory if the set of its zeros is infinite. Otherwise, it is called nonoscillatory. A nontrivial solution $x(t)$ of (1) (or (2)) is said to be strongly decreasing if it satisfies

