On products of the β-elements in the stable homotopy of spheres

Shichirô OKA¹⁾ and Katsumi SHIMOMURA²⁾
(Received April 30, 1982)

§ 1. Introduction

In his paper [20], H. Toda introduced the elements β_s , $1 \le s \le p-1$, in the p-primary component of the stable homotopy of spheres for an odd prime p, and L. Smith [18] extended them to an infinite family $\{\beta_s\}_{s\ge 1}$, in case $p\ge 5$. Later, with the development and plentiful knowledge of the Adams-Novikov spectral sequence based on the Brown-Peterson homology BP such as [5], it is clarified that these β -elements are detected in $\operatorname{Ext}_{BP*BP}^2(BP_*, BP_*)$, the second line of the E_2 -term of the spectral sequence, which consists of an extensive family of elements $\beta_{s/r,i}$ with suitable triple indices including $\beta_s = \beta_{s/1,1}$ (cf. (4.1)). The construction of the homotopy elements β_s is immediate from the one of the 4-cell complex called V(1) and appropriate stable self-maps of V(1) [18], and in this way, L. Smith [19], R. Zahler [23] and the first author [9], [11], [12] constructed homotopy elements which correspond with the generalized β 's in Ext^2 including

$$\beta_{sp/r}$$
 $(s \ge 1, 1 \le r < p), \quad \beta_{sp/p}$ $(s \ge 2), \quad \beta_{sp^2/p, 2}$ $(s \ge 2),$

where $\beta_{sp/r,1} = \beta_{sp/r}$ and some of these were called ε 's and ρ 's in earlier literatures (see (2.4), (2.5)).

The purpose of this paper is to study the products $\beta_s \beta_{tp/r}$ with $r \leq p$ and $\beta_s \beta_{tp^2/p,2}$ in π_*^S , the stable homotopy ring of spheres, in case $p \geq 5$. In particular, we shall study whether they are trivial or not. In this direction, H. Toda [21] obtained a formula of $\beta_s \beta_t$ extending the earlier work of N. Yamamoto [22] and including the relation $\beta_s \beta_{tp} = 0$ which is the case r = 1 of ours.

THEOREM A. Let p be a prime ≥ 5 , and r, s, t be positive integers with $r \leq p$ and $r \leq p-1$ if t=1. Then the element $\beta_s \beta_{tp/r}$ in π_*^S is trivial, if one of the following holds:

- (i) $r \leq p-2$.
- (ii) r = p 1 and $s \not\equiv -1 \mod p$.
- (iii) r = p 1, p and $t \equiv 0 \mod p$.

The next cases we have to investigate are (iv) r=p-1, $s \equiv -1 \mod p$ and $t \not\equiv 0 \mod p$; and (v) r=p and $t \not\equiv 0 \mod p$. For the case (iv), we obtain a weak