A class of hyperbolic focal point problems

Kurt Kreith
(Received August 15, 1983)

1. Introduction

The hyperbolic equation

$$
\begin{equation*}
u_{t t}-u_{s s}+p(s, t) u=0 \quad(p>0) \tag{1.1}
\end{equation*}
$$

has the physical interpretation of prescribing the u-displacement of a vibrating string subject to a linear restoring force. This fact suggests the possibility of formulating a hyperbolic boundary value problem by specifying boundary conditions for the string at times $t=0$ and $t=T$. In analogy with the ordinary differential equation

$$
\begin{equation*}
\frac{d^{2} u}{d t^{2}}+p(t) u=0 \quad(p>0) \tag{1.2}
\end{equation*}
$$

(describing the u-displacement of a single particle), one might expect that such boundary values will also give rise to eigenvalues for hyperbolic equations of the form

$$
\begin{equation*}
u_{t t}-u_{s s}+\lambda p(s, t) u=0 \tag{1.3}
\end{equation*}
$$

While there have been a number of hyperbolic generalizations of the Sturm comparison theorem (see for example [2], [3], [5], [6]) which can be useful in this regard, these extensions of classical ODE results require careful attention to boundary conditions in the space variable s as well as in t. The present paper attempts to avoid the complications associated with spatial boundary conditions by considering focal point problems for (1.1) in characteristic triangles of the form

$$
R(s, t)=\{(\sigma, \tau): s-(t-\tau) \leq \sigma \leq s+(t-\tau), \quad 0 \leq \tau \leq t\}
$$

For example, we shall study (1.3) in $R(0, T)$ with various boundary conditions assigned at $t=0$ and at $t=T$.

It is assumed throughout that $p(s, t)$ is continuous in $R(0, T)$ and that all solutions are C^{2} functions which satisfy the underlying equation in the classical sense.

