Non-triviality of some compositions of β -elements in the stable homotopy of the Moore spaces

Katsumi SHIMOMURA and Hidetaka TAMURA (Received April 30, 1985)

§1. Introduction

Let S be the sphere spectrum and M the Moore spectrum modulo a prime $p \ge 5$ given by the cofiber sequence $S \xrightarrow{p} S \xrightarrow{i} M \xrightarrow{\pi} \Sigma S$; and consider the stable homotopy rings π_*S and $[M, M]_*$. Then, for $s \ge 1$ and $t \ge 2$, the β -elements

(1.1)
$$\beta_{(s)}$$
, $\beta_{(tp/p)}$ in $[M, M]_*$ and $\beta_s = \pi \beta_{(s)} i$,
 $\beta_{tp/p} = \pi \beta_{(tp/p)} i$, $\beta_{tp^2/p,2}$ in $\pi_* S$

are given by Smith [13] (see also [14], [16]) and Oka [7], [8].

Consider the Brown-Peterson spectrum BP at p, the Hopf algebroid $(A, \Gamma) = (BP_*, BP_*BP) = (\mathbb{Z}_{(p)}[v_1, v_2, \cdots], BP_*[t_1, t_2, \cdots])$ and the Adams-Novikov spectral sequence:

$$E_2 = H^*A' = \operatorname{Ext}_{\Gamma}^*(A, A') \Longrightarrow \pi_*M \text{ (resp. } \pi_*S) \quad \text{for} \quad A' = A/(p) \text{ (resp. } A).$$

Then, Miller-Ravenel-Wilson [4] proved the following:

(1.2) There are the β -elements

 β'_{s} in $H^{1}A/(p)$ (resp. β_{s} , $\beta_{tp/p}$, $\beta_{tp^{2}/p,2}$ in $H^{2}A$) (see (2.4.6))

which converge to $\beta_{(s)}i$ in π_*M (resp. the ones in π_*S with the same notation).

The main purpose of this paper is to prove the following

THEOREM A. In the E_2 -term $H^3A/(p)$, $\beta'_s\beta_{tp^2/p,2} = \beta'_{s+tp(p-1)}\beta_{tp/p}$ holds, and $\beta'_s\beta_{tp/p} = 0$ if and only if p|st.

COROLLARY B. In $[M, M]_*$, $\beta_{(s)}(\beta_{tp^2/p, 2} \wedge 1_M)$, $\beta_{(s)}(\beta_{tp/p} \wedge 1_M)$ and $\beta_{(s)}\delta\beta_{(tp/p)}$ are all non-trivial if $p \not\mid st$. Here $\delta = i\pi$ is the generator of $[M, M]_{-1}$.

Corollary B is a consequence of Theorem A and is proved in Corollary 4.2. The equality and the triviality in Theorem A are in Theorem 2.7 which is valid for $p \ge 3$ and can be proved easily by [4] and [9], and the non-triviality is in Theorem 4.1. We note that Theorems 2.7, 4.1 and Corollary 4.2 contain the (non-) triviality of some other compositions.