HIROSHIMA MATH. J. 17 (1987), 355–359

On the differentiability of Riesz potentials of functions

Yoshihiro MIZUTA

(Received December 19, 1986)

In the *n*-dimensional euclidean space R^n , we define the Riesz potential of order α of a nonnegative measurable function f on R^n by

$$R_{\alpha}f(x) = \int R_{\alpha}(x-y)f(y)dy,$$

where $R_{\alpha}(x) = |x|^{\alpha-n}$ if $\alpha < n$ and $R_n(x) = \log(1/|x|)$. It is known (cf. [2]) that if $f \in L^p(\mathbb{R}^n)$, $p \ge 1$, and $|R_{\alpha}f| \ne \infty$, then $R_{\alpha}f$ is (m, p)-semi finely differentiable almost everywhere, where m is a positive integer such that $m \le \alpha$. In the case $\alpha p > n$, this fact implies that $R_{\alpha}f$ is totally m times differentiable almost everywhere. A function u is said to be totally m times differentiable at x_0 if there exists a polynomial P for which $\lim_{x \to x_0} |x - x_0|^{-m}[u(x) - P(x)] = 0$.

In this note, we are concerned with the case where $\alpha p = n$ and α is a positive integer *m*, and aim to give a condition on *f* which assures the total *m* times differentiability of $R_{\alpha}f$.

THEOREM. Let m be a positive integer, p=n/m>1 and f be a nonnegative measurable function on R^n such that $R_m f \neq \infty$ and

$$\int f(y)^p (\log (2+f(y)))^{\delta} dy < \infty \quad \text{for some} \quad \delta > p-1.$$

Then $R_m f$ is totally m times differentiable almost everywhere.

The proof of the theorem will be carried out along the same lines as in that of Theorem 3 in [2].

We first prepare the following lemmas.

LEMMA 1. If m, p and f are as in the Theorem, then

$$\int_{E(f)} R_m(x-y)f(y)dy \leq M\left(\int f(y)^p [\log\left(2+f(y)\right)]^{\delta}dy\right)^{1/p}$$

for all $x \in \mathbb{R}^n$, where $E(f) = \{y; f(y) \ge 1\}$ and M is a positive constant independent of f and x.

PROOF. We may assume that x=0. We set

$$E_{j} = \{y; 2^{j-1} \leq f(y) < 2^{j}\}$$