On a function space related to the Hardy-Littlewood inequality for Riemannian symmetric spaces

Dedicated to Professor Kiyosato Okamoto on his 60th birthday

Keisaku KUMAHARA (Received September 5, 1994)

ABSTRACT. On Riemannian symmetric spaces G/K we define an L^q type Schwartz space $\mathscr{J}^q(G)$ which corresponds to the Schwartz space with weight $|x|^{n(q-2)}$ on \mathbb{R}^n . We study some properties of $\mathscr{J}^q(G)$ and we prove if $2 \le q < 4$ and p and q are conjugate, then $J^q(G)$ equals to the L^p -type Schwartz space $\mathscr{I}^p(G)$ defined by Harish-Chandra.

1. Introduction

For a real number q $(2 \le q < \infty)$ and a Borel function f on \mathbb{R}^n we put

$$||f||_{(q)} = \left(\int_{\mathbb{R}^n} |f(x)|^q |x|^{n(q-2)} dx\right)^{1/q}$$

and denote by $J^q(\mathbf{R}^n)$ the Banach space of all Borel functions f on \mathbf{R}^n satisfying $||f||_{(q)} < \infty$. The Hardy-Littlewood theorem ([3]) says that if $f \in J^q(\mathbf{R}^n)$, then the Fourier transform \tilde{f} of f is well-defined and there exists a constant $C_q > 0$ such that

$$\|\tilde{f}\|_q \leq C_q \|f\|_{(q)}.$$

On the other hand, if $1 \le p \le 2$ and $\frac{1}{p} + \frac{1}{q} = 1$, then the Fourier transform \tilde{f} of $f \in L^p(\mathbb{R}^n)$ is well-defined and there exists a constant $B_p > 0$ such that

$$\|\tilde{f}\|_q \leq B_p \|f\|_p .$$

This is the Hausdorff-Young theorem. These two theorems suggest the resemblance between $L^p(\mathbb{R}^n)$ and $J^q(\mathbb{R}^n)$. In fact, if we put $f_{\alpha}(x) = (1 + |x|^2)^{\alpha}$ and $g_{\beta}(x) = |x|^{\beta}(|x| \le 1)$, = 0(|x| > 1), then

¹⁹⁹¹ Mathematics Subject Classification. 43A15, 43A30, 22E30

Key words and phrases. spherical Fourier transform, Hardy-Littlewood theorem, Schwartz space, Riemmanian symmetric space.