Нікозніма Матн. J. **31** (2001), 409–423

On the Cowling-Price theorem for SU(1,1)

Mitsuhiko Ebata

(Received May 8, 2000) (Revised April 12, 2001)

ABSTRACT. M. G. Cowling and J. F. Price showed a kind of uncertainty principle on Fourier analysis. If v and w grow very rapidly then the finiteness of $||vf||_p$ and $||w\hat{f}||_q$ implies that f = 0, where \hat{f} denotes the Fourier transform of f. We give an analogue of this theorem for SU(1, 1).

1. Introduction

The Hardy theorem asserts that if a measurable function f on \mathbf{R} satisfies $|f(x)| \leq Ce^{-ax^2}$ and $|\hat{f}(y)| \leq Ce^{-by^2}$ and $ab > \frac{1}{4}$ then f = 0 (a.e.). Here we use the Fourier transform defined by $\hat{f}(y) = (1/\sqrt{2\pi}) \int_{-\infty}^{\infty} f(x)e^{\sqrt{-1}xy} dx$. M. G. Cowling and J. F. Price [4] generalized the Hardy theorem as follows: Suppose that $1 \leq p, q \leq \infty$ and one of them is finite. If a measurable function f on \mathbf{R} satisfies $\|\exp\{ax^2\}f(x)\|_{L^p(\mathbf{R})} < \infty$ and $\|\exp\{by^2\}\hat{f}(y)\|_{L^q(\mathbf{R})} < \infty$ and $ab \geq 1/4$ then f = 0 (a.e.). The case where $p = q = \infty$ and ab > 1/4 is covered by the Hardy theorem. S. C. Bagchi and S. K. Ray [1] showed that if ab > 1/4, then the Hardy theorem is equivalent to the Cowling-Price theorem.

A. Sitaram and M. Sundari [14] obtained the Hardy theorem in the case of noncompact semisimple Lie groups with one conjugacy class of Cartan subgroups, $SL(2, \mathbf{R})$ and Riemannian symmetric spaces of the noncompact type. Recently J. Sengupta [12] and M. Ebata et al. [6] obtained the Hardy theorem for all Lie groups of Harish-Chandra class and all connected semisimple Lie groups with finite center respectively. Also, M. Cowling, A. Sitaram and M. Sundari [5] gave another simple proof of the Hardy theorem for connected real semisimple Lie groups with finite center. On the other hand, S. C. Bagchi and S. K. Ray [1] obtained the Cowling-Price theorem for some Lie groups and M. Eguchi, S. Koizumi and K. Kumahara [7] also obtained the Cowling-Price theorem for motion groups. Further, J. Sengupta [13] obtained the Cowling-Price theorem on Riemannian symmetric spaces of the noncompact type.

In this paper, we prove the Cowling-Price theorem for SU(1,1) under the assumption that $1 \le p, q \le \infty$ and ab > 1/4.

²⁰⁰⁰ Mathematics Subject Classification. 43A15, 43A85.

Key words and phrases. Cowling-Price theorem, uncertainty principle, Hardy theorem