Stable extendibility of $m\tau_n$ over real projective spaces

Hironori YAMASAKI

(Received December 21, 2004) (Revised April 1, 2005)

ABSTRACT. The purpose of this paper is to study the stable extendibility of the *m*-times Whitney sum $m\tau_n$ of the tangent bundle $\tau_n = \tau(RP^n)$ of the *n*-dimensional real projective space RP^n . We determine the dimension N for which $m\tau_n$ is stably extendible to RP^N but is not stably extendible to RP^{N+1} for $m \leq 10$.

1. Introduction

Let X be a space and A its subspace. A t-dimensional real vector bundle ζ over A is said to be *extendible* (respectively *stably extendible*) to X, if there is a t-dimensional real vector bundle over X whose restriction to A is equivalent (respectively stably equivalent) to ζ , that is, ζ is equivalent (respectively stably equivalent) to the induced bundle $i^*\eta$ of a t-dimensional real vector bundle η over X under the inclusion map $i : A \to X$ (cf. [10, p. 20] and [3, p. 273]). Let RP^n denote the *n*-dimensional real projective space. For a real vector bundle ζ over RP^n , define an integer $s(\zeta)$ by

$$s(\zeta) = \max\{m \mid m \ge n \text{ and } \zeta \text{ is stably extendible to } RP^m\},\$$

where we put $s(\zeta) = \infty$ if ζ is stably extendible to RP^m for every $m \ge n$.

The following theorem is known.

THEOREM 1 ([7, Theorem 4.2]). For the tangent bundle $\tau_n = \tau(RP^n)$ of RP^n ,

 $s(\tau_n) = \infty$ if n = 1, 3 or 7; and $s(\tau_n) = n$ if $n \neq 1, 3, 7$.

The purpose of this paper is to study $s(m\tau_n)$ for $m \ge 2$. Our main results are as follows.

We write simply s(m,n) instead of $s(m\tau_n)$.

THEOREM 2. (1) If $1 \le n \le 8$, then $s(2, n) = \infty$. (2) If $n \ge 9$, then s(2, n) = 2n + 1.

²⁰⁰⁰ Mathematics Subject Classification. Primary 55R50; Secondary 55N15.

Keywords and Phrases. vector bundle, tangent bundle, Whitney sum, real projective space, stably extendible, KO-theory.