Нікозніма Матн. J. **35** (2005), 115–124

On the rate of convergence for some linear operators

Zbigniew WALCZAK

(Received February 4, 2004) (Revised September 21, 2004)

ABSTRACT. We consider certain linear operators L_n in polynomial weighted spaces of functions of one variable and study approximation properties of these operators, including theorems on the degree of approximation.

1. Introduction

Approximation properties of Szász-Mirakyan operators

(1)

$$S_n(f;x) := e^{-nx} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!} f\left(\frac{k}{n}\right), \qquad x \in R_0 = [0, +\infty), \, n \in N := \{1, 2...\},$$

in polynomial weighted spaces C_p were examined in [1]. The space C_p , $p \in N_0 := \{0, 1, 2, ...\}$, is associated with the weighted function

(2)
$$w_0(x) := 1, \qquad w_p(x) := (1 + x^p)^{-1} \quad \text{if } p \ge 1,$$

and consists of all real-valued continuous functions f on R_0 for which $w_p f$ is uniformly continuous and bounded on R_0 . The norm on C_p is defined by

(3)
$$||f||_p \equiv ||f(\cdot)||_p := \sup_{x \in R_0} w_p(x)|f(x)|$$

In [1] there were theorems on the degree of approximation of $f \in C_p$ by operators S_n defined by (1). From these theorems it was deduced that

$$\lim_{n\to\infty} S_n(f;x) = f(x)$$

for every $f \in C_p$, $p \in N_0$, and $x \in R_0$. Moreover, the above convergence is uniform on every interval $[x_1, x_2]$, $x_2 > x_1 \ge 0$.

In this paper by $M_k(\alpha, \beta)$, we shall denote suitable positive constants depending only on indicated parameters α and β .

²⁰⁰⁰ Mathematics Subject Classification. 41A36

Key words and phrases. Linear operator, degree of approximation.