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A GENERALIZED LITTLEWOOD THEOREM FOR
WEINSTEIN POTENTIALS ON A HALFSPACE
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1. Introduction and statement of results

Let 1R_ {x (Xl xn) C= ]n. Xn > 0} denote the upper halfspace in ]1n,
n > 2. We view the boundary of IR_ as IRn-1 Let k 6 JR. The Weinstein equation
with parameter k is Lk (f) 0 where

02f k 0f(f) j=l "X Xn OXn

The C2 functions which satisfy the Weinstein equation form a Brelot harmonic space
[He]. We shall refer to these solutions as Lk-harmonic functions. The L0-harmonic
functions are just the classical harmonic functions. An integral representation for all
positive Lk-harmonic functions in terms of measures on IRn- tO {oo} (when we simply
use the term measure, we mean a nonnegative, regular, Borel measure) was given in
[BCB ]. There, the uniqueness of such an integral was demonstrated using Choquet’s
theorem. The same authors have also proved that every positive Lk-harmonic function
has finite non-tangential limit at (Lebesgue) almost every point in IRn-l [BCB2].

In our paper we consider the boundary behavior of Lk-potentials. We recall that
Lk-superharmonic functions, following the axiomatic study in [He], are precisely
those lower semicontinuous, (-x, o] valued functions v that satisfy Lk(v) < 0 in
the sense of distributions. The Lk-potentials (the Weinstein potentials of the title)
are those positive Lk-superharmonic functions that majorise no positive Lk-harmonic
function. For every y e

_
we associate the function

I-k f sin-kt
Gk(x, y) an,kxn Yn [Ix y[2 + 2XnYn(l COSt)](n-k)

dt fork _< l, (1)

and

f sink-
Gk(x, y) an,2-kykn Jo [IX yl2 + 2Xnyn(1 cost)] (n+k-2)/2

where

F (k)
for k < 1.an,k 2yrn/21_ (2..___k)

dt fork > 1, (2)
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