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Introduction

The purpose of this note is to consider various properties of loops which are
related to central nilpotency, and to determine some of the implications
which hold among them. Since some of the properties considered are equiv-
alent to nilpotency for the class of finite groups, it is natural to ask whether
or not any of the properties is equivalent to central nilpotency for an in-
teresting class of finite loops. Another reason for studying the problem is
that the standard, group-theoretic proofs in the area of nilpotency ultimately
depend on the rather remarkable properties of Sylow normalizers. Since
neither “Sylow subloops” nor normalizers exist, in general, for loops, some
of the proofs and counterexamples obtained for loops expose the essential
reasons behind the success of the theory for groups.

The paper is divided as follows. In Section 1 we present the conditions
to be studied and list some of the implications among them which hold for
loops in general. Various pathological examples lead us to restrict ourselves
to power-associative loops. We begin Section 2 with a general theorem about
power-associative loops. Although the result is not deep, it seems to be
new, perhaps because no one needed it before. Using this theorem, we next
give a method for constructing new, power-associative loops from old ones.
In particular, we construct enough pathological examples to show that the
results for power-associative loops must be meager. In Section 3, therefore,
we consider diassociative loops. We are able to show that some reasonably
interesting implications hold for rather restricted classes of diassociative
loops, and we obtain an example which shows that even commutative, dias-
sociative 2-loops are ill-mannered, indeed. In the final section, we touch
briefly on the problem for Moufang loops and note that a certain amount of
pathology is still present.

1. The problem for general loops

Throughout what follows we use the notation of [1]. In addition, the
symbol (A) stands for the subloop generated by the set A, and | 4 | is the
order of {(A). We use the symbol A < B (A < B) to stand for the statement
that A is a subloop of B (and is not B) and use A <{ B to mean that 4 is a
normal subloop of B. We parallel the definition in Kurosh [5, p. 215] and
define an N-loop to be a loop in which every proper subloop is normal in a
strictly larger subloop. Finally, if 7 is a set of primes, we let 7’ be the comple-
mentary set and call a loop a =-loop in case it is power-associative and con-

Received January 18, 1964.
399



