ON A CLASS OF DOUBLY TRANSITIVE GROUPS

BY
Ernest Shult

The purpose of this paper is to prove the following theorem:
Theorem. Let G be a transitive group of permutations on the (finite) set of letters Ω. Let G_{α} be the subgroup of G fixing the letter α in Ω. Suppose G_{α} contains a normal subgroup Q of even order, which is regular on $\Omega-(\alpha)$. Then either
(a) G is a subgroup of the group of semi-linear transformations over a near field of odd characteristic or
(b) G is an extension of one of the groups $S L(2, q), S z(q)$ or $U(3, q)$ by a subgroup of its outer automorphism group. $\quad\left(|\Omega|=1+q, 1+q^{2}\right.$ or $1+q^{3}$ in these three respective cases $\left(q=2^{n}\right)$.)

Essentially "half" of this theorem was proved by Suzuki [8], under the assumption that the quotient group G_{α} / Q had odd order. We therefore consider only the case that G_{α} / Q has even order.

Since Q is regular on $\Omega-(\alpha)$, we may express G_{α} as a semidirect product $G_{\alpha \beta} Q$ where $G_{\alpha \beta}=G_{\alpha} \cap G_{\beta}$, the subgroup of permutations fixing both α and β.

For the rest of this paper, all groups considered are finite. We write $|X|$ for the cardinality of set X. If X is a subset of a group G, we write $X \subseteq G$, and if X is a subgroup of G, we write $X \leq G$. If $X \subseteq G,\langle X\rangle$ will denote the subgroup of G generated by X. If X is a subset of G, X^{G} denotes the set of all conjugate sets $\left\{g^{1} X g \mid g \in G\right\}$. We will frequently write $\left\langle X^{G}\right\rangle$ instead of the more cumbersome $\left\langle\bigcup_{Y, X^{G}} Y\right\rangle$. This is the normal closure of X in G and represents the smallest normal subgroup of G containing X. If M is a group of (right) operators of a group G it will frequently be convenient to proceed with computations in the semi-direct product $G M$ and also to view $G M$ as a group of right operators of G, the elements of G acting by conjugation. Action of these operators is indicated by exponential notation. Thus if $x \in G$, $g^{-1} x g$ may be written x^{g} and if σ is an automorphism of G, we may write

$$
\left(x^{\sigma}\right)^{\sigma}=x^{\sigma \sigma}=x^{\sigma \cdot \theta^{\sigma}} .
$$

The commutator $x^{-1} y^{-1} x y$ is written $[x, y]$. If σ is an automorphism of G and if $x \in G$, then the commutator $[x, \sigma]$ is assumed to be computed in the semidirect product $G\langle\sigma\rangle$, so $[x, \sigma]=x^{-1} \cdot x^{\sigma}$. If π is a set of primes, a π-group is a group whose order involves only primes in π. As usual, π^{\prime} denotes the complement of π in the set of all primes. If π consists of a single prime p, the symbol p (rather than $\{p\}$) may replace the symbol π in the notation of

[^0]
[^0]: Received March 30, 1970.

