CONTINOUSLY SPLITTABLE DISTRIBUTIONS IN HILBERT SPACE

BY

DAVID SHALE¹ AND W. FORREST STINESPRING

1. Introduction

1.1. This paper is concerned with a class of weak distributions on Hilbert space. Let H be a real Hilbert space. A weak distribution is a linear mapping on H which takes each linear function (x, \cdot) on H into a random variable m(x) on a probability measure space. It is supposed that σ -algebra of measurable sets is the smallest such that all the m(x) are measurable. See [2], [4] and [5].

The normal distribution n is characterized, up to a variance parameter c, by the property that orthogonal vectors x and y correspond to stochastically independent random variables n(x) and n(y). Then each n(x) is normally distributed with variance $c \parallel x \parallel^2$ and mean zero. See [5, Theorem 3].

1.2. By a spectral measure \mathcal{E} we mean a completely additive Boolean algebra of commuting projections. We say that \mathcal{E} splits a weak distribution m if, for each x in H and each P in \mathcal{E} , m(Px) and m((I - P)x) are stochastically independent. Every spectral measure splits the normal distribution.

One way splittable distributions arise is from suitably smooth stochastic processes with independent increments. For example let X_t , $0 \le t \le 1$, be such a process. Let $H = L_2(0, 1)$. Let $m(f) = \int f(t) dX_t$. Then m is split by the natural spectral measure on $L_2(0, 1)$.

1.3. A non-atomic spectral measure is one without any non-zero minimal projections. Our main result says if \mathcal{E} is a non-atomic spectral measure which splits a weak distribution m, and if m is absolutely continuous with regard to the normal distribution n, then m is equivalent to n and is actually a translate of n by an element of H. Our proof makes use of two properties of the normal distribution both due to I. E. Segal. They are the duality transform [4, Theorem 3], and the ergodicity theorem [3, Theorem 1].

1.4. Let x_1, \dots, x_n be orthogonal vectors in H. Let

$$\varphi(t_1, \cdots, t_n)$$

be a bounded Baire function. Then $f(x) = \varphi(t_1, \dots, t_n)$ with $t_1 = (x_1, x), \dots t_n = (x_n, x)$ is called a tame function on H. It clearly corresponds to a random variable with regard to the normal distribution. Given a trans-

Received April 9, 1965.

¹ Most of this work was done in 1964 when the first named author was a summer visitor at Argonne National Laboratory, Argonne, Illinois.