HOMOTOPY GROUPS OF THE SPACE OF HOMEOMORPHISMS ON A 2-MANIFOLD

BY
Mary-Elizabeth Hamstrom ${ }^{1}$
\section*{1. Introduction}

This is the final paper in a series of papers concerning the homotopy groups of the space of homeomorphisms on a 2 -manifold. If M is a compact 2-manifold with boundary M°, and K is a closed subset, denote by $H(M, K)$ the space of homeomorphisms of M onto itself leaving K pointwise fixed and by $H_{0}(M, K)$ its identity component. Kneser proved [14] that the space of rigid motions on S^{2} is a deformation retract of $H_{0}\left(S^{2}\right)$. Thus $\pi_{n} H_{0}\left(S^{2}\right)=\pi_{n}\left(P^{3}\right)$ for each $n, \pi_{n} H_{0}\left(S^{2}\right)=\pi_{n}\left(S^{3}\right)$ for $n>1$, and $\pi_{n} H_{0}\left(S^{2}\right)=\pi_{n}\left(S^{2}\right)$ for $n>2$. In particular $\pi_{1} H_{0}\left(S^{2}\right)=Z_{2}$ and $\pi_{n} H_{0}\left(S^{2}\right)=0$. If M is a disc with holes or a Moebius strip, $H_{0}\left(M, M^{\cdot}\right)$ is homotopically trivial ([6], [8] and [12]). In fact Alexander's classic result [1] that the space of homeomorphisms of an n-cell onto itself leaving the boundary pointwise fixed is contractible and locally contractible is a most important tool in the study of these problems. If M is a torus, $\pi_{i} H_{0}(M)=\pi_{i}(M)$ for each i, and if M is a torus with the interiors of a finite number of disjoint dises removed, $H_{0}\left(M, M^{\cdot}\right)$ is homotopically trivial [11]. For real projective space, $\pi_{i} H_{0}\left(P^{2}\right)=\pi_{i}\left(P^{2}\right)$ for $i>2$, $\pi_{2} H_{0}\left(P^{2}\right)=0, \pi_{1} H_{0}\left(P^{2}\right)=Z_{2}, \pi_{1} H_{0}\left(P^{2}, x\right)=Z$, where $x \epsilon P^{2}$ and $\pi_{i} H_{0}\left(P^{2}, x\right)=0$ for $i>1$ (see [12]). For the Klein bottle $K, \pi_{i} H_{0}(K)=0$ for $i>1, \pi_{1} H_{0}(K)=Z$ and $\pi_{i} H_{0}(K, x)=0$ for each i [12]. In this present paper, it is shown that $H_{0}(M)$ is homotopically trivial for all compact 2-manifolds (without boundary) of genus greater than 1, if orientable, and greater than 2 , if non-orientable; and that, if M is a compact 2 -manifold with nonempty boundary, $H_{0}\left(M, M^{\cdot}\right)$ is homotopically trivial.

Further related results may be found in McCarty's paper [16], where he proves among other things, that

$$
\pi_{1} H_{0}\left(S^{2}, x\right)=\pi_{1} H_{0}\left(S^{2}, x \mathbf{u} y\right)=Z
$$

and

$$
\pi_{i} H_{0}\left(S^{2}, x\right)=\pi_{i} H_{0}\left(S^{2}, x \cup y\right)=0 \quad \text { for } \quad i>1
$$

and that if K is a finite subset of S^{2} with more than two points $H_{0}\left(S^{2}, K\right)$ is homotopically trivial. Quintas proves in [18] that if M is an orientable compact manifold with two or more handles or is non-orientable with three or more cross-caps and M_{k} is the manifold obtained from M by deleting k points, $\pi_{n} H_{0}(M)=\pi_{n} H_{0}\left(M_{k}\right)$ for each n. It thus follows from McCarty's work that in this case $\pi_{n} H_{0}(M)=\pi_{n} H_{0}(M, x)$.

[^0]
[^0]: Received February 15, 1965.
 ${ }^{1}$ Presented to the American Mathematical Society, April 20, 1964. Research supported in part by the National Science Foundation.

