LOCALLY CONNECTED SPACES AND THEIR COMPACTIFICATIONS¹

BY

J. DE GROOT AND R. H. McDowell

Introduction

This paper arose from the following problem: to find conditions under which a locally connected, rim-compact Hausdorff space H has a locally connected Hausdorff compactification. This proves to be the case (Theorem 4.2) if and only if at most finitely many of the components of H are compact. In trying to find a simple proof, the authors realized that a systematic and simple approach to the theory of locally connected spaces can be obtained by stressing—even more than Wilder [13]—the use of quasicomponents. We use, among other notions (e.g. "paddedness") the property of being quasilocally connected at a point [13, p. 40], and observe that the useful Proposition 1.7 holds for quasicomponents but not for components. The quasicomponent approach leads naturally to the result that in a connected, compact Hausdorff space, the property "components coincide with quasicomponents on every open subset" is equivalent to local connectedness (The-(Recall that components and quasicomponents coincide on orem 3.3). every *closed* subset of *any* compact Hausdorff space.)

To ask for a reasonable necessary and sufficient condition that a locally connected completely regular Hausdorff space have a locally connected Hausdorff compactification seems hopeless. However, it is known [6] that *every* compactification of such a space is locally connected if and only if the space is pseudo-compact. We readily obtain a proof of this theorem, and add some corollaries.

Example 5.3 seems to be of interest. Here we exhibit a subspace S of Euclidean three-space which is the union of a countable number of pairwise disjoint closed intervals, each nowhere dense in S, but S is nevertheless connected and locally connected.

The authors wish to thank the referee for his many helpful suggestions and corrections, which improved the paper substantially.

1. Components and quasicomponents

1.1. DEFINITIONS. Let p be a point in the space X. If the subset S of X is both open and closed in X, we say S is *clopen* in X.

The component of p in X is the maximal connected subset of X containing p.

Received April 23, 1964; received in revised form August 11, 1966.

¹ This paper was begun while the second author was supported by the Charles F. Kettering Foundation, and completed while both authors were working under contracts from the National Science Foundation.