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Introduction
This paper arose from the following problem: to find conditions under

which a locally connected, rim-compact Hausdorff space H has a locally
connected Hausdorff compactification. This proves to be the case (Theorem
4.2) if and only if at most finitely many of the components of H are compact.
In trying to find a simple proof, the authors realized that a systematic and
simple approach to the theory of locally connected spaces can be obtained by
stressing--even more than Wilder [13]--the use of quasicomponents. We
use, among other notions (e.g. "paddedness") the property of being qua-
silocally connected at a point [13, p. 40], and observe that the useful Propo-
sition 1.7 holds for quasicomponents but not for components. The qua-
sicomponent approach leads naturally to the result that in a connected,
compact Hausdorff space, the property "components coincide with qua-
sicomponents on every open subset" is equivalent to local connectedness (The-
orem 3.3). (Recall that components and quasicomponents coincide on
every closed subset of any compact Hausdorff space.)
To ask for a reasonable necessary and sufficient condition that a locally

connected completely regular Hausdorff space have a locally connected Haus-
dorf compactification seems hopeless. However, it is known [6] that every
compactification of such a space is locally connected if and only if the space is
pseudo-compact. We readily obtain a proof of this theorem, and add some
corollaries.
Example 5.3 seems to be of interest. Here we exhibit a subspace S of

Euclidean three-space which is the union of a countable number of pairwise
disjoint closed intervals, each nowhere dense in S, but S is nevertheless con-
nected and locally connected.
The authors wish to thank the referee for his many helpful suggestions and

corrections, which improved the paper substantially.

1. Components and quasicomponents
1.1. DEFINITIONS. Let p be a point in the space X. If the subset S ofX

is both open and closed in X, we say S is clopen in X.
The component of p in X is the maximal connected subset of X containing p.
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