RATIONAL FUNCTIONS H^{∞} AND H^{p} ON INFINITELY CONNECTED DOMAINS

ву Stephen D. Fisher¹

Introduction

Let D be a domain (an open connected set) in the complex plane and for $1 \leq p < \infty$, let $H^p(D)$ be those analytic functions f on D for which $|f|^p$ has a harmonic majorant on D. Fix t_0 in D and put $||f||_p = [u(t_0)]^{1/p}$ where u is the least harmonic majorant of $|f|^p$ on D. Then $|| ||_p$ is a norm on $H^p(D)$ which depends upon the point t_0 although the resulting topology on $H^p(D)$ does not. Let $H^\infty(D)$ be the algebra of bounded analytic functions on D with the uniform norm.

These H^p spaces, which generalize the classical Hardy H^p spaces in the unit disc U for $1 \leq p < \infty$, were introduced by Parreau in 1951 [5] and independently by Rudin in 1955 [6]. In his paper Rudin showed that if D is bounded by a finite number of disjoint circles then the rational functions with poles off \bar{D} are dense in $H^p(D)$, $1 \leq p < \infty$, and hence $H^\infty(D)$ is dense in $H^p(D)$ for $1 \leq p < \infty$. Further, if D_1 is conformally equivalent to D, then $H^p(D_1)$ and $H^p(D)$ are isometrically isomorphic for $1 \leq p \leq \infty$; hence $H^\infty(D)$ is dense in $H^p(D)$ on all bounded domains with only finitely many complementary components. The aim of this paper is to show that $H^\infty(D)$ is dense in $H^p(D)$ on two types of infinitely-connected domains. These two types of domain are very different and the techniques of the proof differ vastly from one to the other. One type is treated in Section 1 and the other in Section 2. The author would like to thank Profs. F. Forelli and M. Voichick for several helpful conversations regarding the contents of this paper.

1.

If $H^{\infty}(D)$ contains non-trivial functions, then the unit disc U is the universal covering surface of D and hence there is an analytic function w from U onto D which is locally one-to-one and may be used to lift paths uniquely from D to U. If $f \in H^{p}(D)$, $1 \leq p \leq \infty$, then the analytic function g(z) = f(w(z)) is in $H^{p}(U)$ and if $w(0) = t_{0}$ (which we may assume without loss of generality), then $\|g\|_{p} = \|f\|_{p}$, where

$$\|g\|_{p}^{p} = \sup_{0 < r < 1} \left[\frac{1}{2\pi} \int_{0}^{2\pi} |g(re^{i\theta})|^{p} d\theta \right] \quad \text{for } 1 \le p < \infty$$

and $||g||_{\infty} = \sup_{z \in U} |g(z)|$ is the usual H^p norm in the disc.

Let G be the group of linear fractional transformations T of U onto U such that w(T(z)) = w(z) for all z in U. If $f \in H^p(D)$ and if $g = f \cdot w$, then g is

Received April 12, 1967.

¹ National Science Foundation Co-operative Graduate Fellow.