A MONOTONIC MAPPING THEOREM FOR SIMPLY CONNECTED 3-MANIFOLDS¹

BY

Edwin E. Moise

1. Statement of results

THEOREM. Let M be a triangulated 3-manifold, and suppose that M is compact, connected and simply connected. Then there is a subcomplex K of a triangulation of the 3-sphere S^3 , and a mapping

 $f: S^3 \to M$

of S^3 onto M, such that

(1) dim $K \leq 2$,

(2) $f \mid K$ is simplicial (relative to K and a subdivision of M),

(3) $f \mid (S^3 - K)$ is one-to-one,

(4) $f(K) \cap f(S^3 - K) = 0$,

(5) f is monotonic, and

(6) Each set $f^{-1}(x)$ is either a point or a linear graph.

Here (5) means that each set $f^{-1}(x)$ is connected. By a linear graph we mean a 1-dimensional polyhedron.²

2. Bing's example

R. H. Bing [B] has given a curious example of a mapping of the sort described in the above theorem. In Bing's example, M is S^3 , but the inverseimage sets $f^{-1}(x)$ are of an unexpected sort. Consider (as shown on the left in Figure 1) two circular disks D_1 , D_2 which intersect each other in a common radius. Let their boundaries be the circles C_1 and C_2 . Each of these is decomposed into concentric circles. (In the figure, we show one such circle J_1 in D_1 , and one such circle J_2 in D_2 .) Thus we have a collection G of sets, consisting of (1) the points of $S^3 - (D_1 \cup D_2)$, (2) the circles C_1 and C_2 and (3) infinitely many "figure 8's" of the type $J_1 \cup J_2$.

The collection G is upper-semicontinuous in the usual sense: if X is any closed set in S^3 , then the union of all elements of G that intersect X is also a closed set [K]. Thus we can define a Hausdorff topology in G, by saying

Received March 16, 1967.

¹ A portion of the work reported here (in Sections 3 through 10 below) was done while the author held a Guggenheim Memorial Foundation Fellowship. This portion of the paper was also sponsored by the National Science Foundation and the Institute for Advanced Study.

² Theorem 3.1 below was announced in [M] (see the bibliography at the end), and earlier, in colloquia at Warsaw and Madison. Since then, a weaker version of the theorem has been proved by Wolfgang Haken $[H_1]$.