ON COLLAPSIBLE BALL PAIRS ${ }^{1}$

BY
L. S. Husch

One of the essential parts of Zeeman's proof [20], [21] to show that ball pairs $B^{q}, B^{s}, q-s \geq 3$, were unknotted was to show that B^{q} collapses to B^{s}. For $q-s=2$, it is well known that there exist ball pairs B^{q}, B^{q-2}, such that B^{q}, B^{q-2} are knotted but B^{q} collapses to B^{q-2} for $q \geq 4$. For $q=1,2,3$, it is known that $B^{q}, \mathrm{~B}^{q-1}$ is unknotted and hence B^{q} collapses to B^{q-1} [5]. We say B^{q}, B^{s} is a collapsible ball pair if B^{q} collapses to B^{s}. In this paper we examine ball pairs B^{q}, B^{q-1} for $q \geq 4$ with regards to collapsibility. It is known that B^{4}, B^{3} is unknotted iff B^{4}, B^{3} is a collapsible ball pair; however, it is unknown whether there exist knotted B^{q}, B^{q-1} for $q \geq 4$. We show that for $q \geq 6$, every B^{q}, B^{q-1} is a collapsible ball pair and give some necessary and sufficient conditions that B^{q} collapses to B^{q-1} for $q=4,5$. We also characterize all ball pairs B^{5}, B^{4}.
Terminology and definitions will be as in [20] except as follow. By a manifold, we mean a locally Euclidean, separable metric space. When referring to combinatorial manifolds and piecewise linear maps we shall always use the adjectives combinatorial and piecewise linear. Let M be an orientable manifold; by bdry M we mean the boundary of M with the induced orientation; by int M, the interior of M; by M^{-}we mean M with its orientation reversed. By $\mathrm{Cl} X$, we mean the closure of X.
Theorem 1. Let B^{n}, B^{n-1} be a ball pair with $n \geq 6$; then B^{n} collapses to B^{n-1}.

1. Proof of Theorem 1 for $n \geq 7$

Let N be an admissible regular neighborhood of B^{n-1} in B^{n} [20; Chap. VII, p. 67]. Then $N \cap$ bdry B^{n} is a regular neighborhood of bdry B^{n-1} in bdry B^{n}. It was shown in [8] that

$$
\mathrm{Cl}\left(\text { bdry } B^{n}-\left(N \cap \text { bdry } B^{n}\right)\right)
$$

is the union of two disjoint combinatorial ($n-1$)-cells, say $S_{1} \cup S_{2}$. Similarly, Cl (bdry $N-\left(N \mathrm{n}\right.$ bdry $\left.B^{n}\right)$) is the union of two disjoint combinatorial $(n-1)$-cells, say $T_{1} \cup T_{2}$, indexed so that $S_{i} \cap T_{i} \neq \emptyset, i=1,2$. Then each $S_{i} \cup T_{i}$ is a combinatorial ($n-1$)-sphere. Hence by considering the double of B^{n}, it follows from [4], [15] that each $S_{i} \cup T_{i}$ bounds a topological

[^0]
[^0]: Received December 4, 1966.
 ${ }^{1}$ Some of the contents of this paper form a part of the author's dissertation submitted as partial requirement for the Ph.D. degree at Florida State University under the direction of Professor James J. Andrews. Research was supported by a National Science Foundation Cooperative Graduate Fellowship and a National Science Foundation grant.

