ON COLLAPSIBLE BALL PAIRS¹

BY

L. S. Husch

One of the essential parts of Zeeman's proof [20], [21] to show that ball pairs B^q , B^s , $q - s \ge 3$, were unknotted was to show that B^q collapses to B^s . For q - s = 2, it is well known that there exist ball pairs B^q , B^{q-2} , such that B^q , B^{q-2} are knotted but B^q collapses to B^{q-2} for $q \ge 4$. For q = 1, 2, 3, it is known that B^q , B^{q-1} is unknotted and hence B^q collapses to B^{q-1} [5]. We say B^q , B^s is a collapsible ball pair if B^q collapses to B^s . In this paper we examine ball pairs B^q , B^{q-1} for $q \ge 4$ with regards to collapsibility. It is known that B^4 , B^3 is unknotted iff B^4 , B^3 is a collapsible ball pair; however, it is unknown whether there exist knotted B^q , B^{q-1} for $q \ge 4$. We show that for $q \ge 6$, every B^q , B^{q-1} is a collapsible ball pair and give some necessary and sufficient conditions that B^q collapses to B^{q-1} for q = 4, 5. We also characterize all ball pairs B^5 , B^4 .

Terminology and definitions will be as in [20] except as follow. By a manifold, we mean a locally Euclidean, separable metric space. When referring to combinatorial manifolds and piecewise linear maps we shall always use the adjectives combinatorial and piecewise linear. Let M be an orientable manifold; by bdry M we mean the boundary of M with the induced orientation; by int M, the interior of M; by M^- we mean M with its orientation reversed. By Cl X, we mean the closure of X.

THEOREM 1. Let B^n , B^{n-1} be a ball pair with $n \ge 6$; then B^n collapses to B^{n-1} .

1. Proof of Theorem 1 for $n \ge 7$

Let N be an admissible regular neighborhood of B^{n-1} in B^n [20; Chap. VII, p. 67]. Then $N \cap$ bdry B^n is a regular neighborhood of bdry B^{n-1} in bdry B^n . It was shown in [8] that

$$Cl (bdry B^n - (N \cap bdry B^n))$$

is the union of two disjoint combinatorial (n - 1)-cells, say $S_1 \cup S_2$. Similarly, Cl (bdry $N - (N \cap bdry B^n)$) is the union of two disjoint combinatorial (n - 1)-cells, say $T_1 \cup T_2$, indexed so that $S_i \cap T_i \neq \emptyset$, i = 1, 2. Then each $S_i \cup T_i$ is a combinatorial (n - 1)-sphere. Hence by considering the double of B^n , it follows from [4], [15] that each $S_i \cup T_i$ bounds a topological

Received December 4, 1966.

¹ Some of the contents of this paper form a part of the author's dissertation submitted as partial requirement for the Ph.D. degree at Florida State University under the direction of Professor James J. Andrews. Research was supported by a National Science Foundation Cooperative Graduate Fellowship and a National Science Foundation grant.