A CHARACTERIZATION OF THE ALTERNATING GROUP OF DEGREE ELEVEN

BҮ

TAKESHI KONDO

Introduction

The main purpose of the present paper is to prove the following theorem. THEOREM B. Let G be a finite group satisfying the following conditions:

(1) G has no normal subgroup of index 2, and

(2) G contains an involution z_0 such that $C_g(z_0)$ is isomorphic to the centralizer of an involution in the center of an S_2 -subgroup of A_{11} , the alternating group of degree eleven.

Then G is isomorphic to A_{11} .

Let D be a 2-group of order 2^7 which is isomorphic to a wreath product of a dihedral group of order 8 by a group of order 2. An S_2 -subgroup of A_{11} is isomorphic to D. Further, there are infinitely many simple groups with an S_2 -subgroup isomorphic to D, namely $LF_4(q)$ ($q \equiv 3 \mod 8$) and $U_4(q)$ ($q \equiv 5 \mod 8$). So the present paper contains detailed discussions of a finite group with an S_2 -subgroup isomorphic to D, which are more than necessary for the proof of Theorem B (cf. footnote 2)). The results are summarized in Theorem A of §4.

Notation:

$\operatorname{ccl}_{\mathtt{X}}(x)$	a conjugate class in a group X containing x
$\langle \cdots \rangle$	a group generated by
X'	the commutator subgroup of a group X
[x, y]	$x^{-1}y^{-1}xy$
x^y	$y^{-1}xy$
$x \sim y \text{ in } X$	x is conjugate to y in a group X
J(X)	the Thompson subgroup of X (cf. [7])
$C_{\mathbf{x}}^{*}(\mathbf{x})$	$\langle y \epsilon X \mid y^{-1} x y = x^{\pm 1} \rangle.$
$A_n(S_n)$	the alternating (symmetric) group of degree n
7731 (1	

The other notations are standard.

1. Preliminaries

(1.0) Let X be a finite group and S be an S_2 -subgroup of X. Let K be a subset of S which is an intersection of S with a conjugate class of X. An element x of K is called an extreme element if $|C_s(x)| \ge |C_s(y)|$ for any $y \in K$. The following is due to R. Brauer [1, p. 308].

(1.1) LEMMA. If x is an extreme element of K, $C_s(x)$ is an S_2 -subgroup of $C_x(x)$. Moreover, for every element y of K, there exists an isomorphism θ

Received September 22, 1967.