THE NUMBER OF HALL π -SUBGROUPS OF A FINITE GROUP

BY EUGENE SCHENKMAN¹

This note gives a theorem on the number of Hall π -subgroups of a finite group which includes a recent result of Marshall Hall on the number of Sylow subgroups as well as the classical theorem of Philip Hall on the number of Hall π -subgroups of a solvable group (cf. [1] and [2]).

We shall consider groups G which satisfy the following proposition for a given set of primes π .

 A_{π} . Given any π -subgroups P_i of G for i=1,2, there are Hall π -subgroups H_i of G so that $H_i \geq P_i$ and an automorphism α of G so that $H_1 \alpha = H_2$.

If a group satisfies proposition A_{π} we shall call it an A_{π} -group. It is clear that a group satisfying the well-known proposition D_{π} of Philip Hall (cf. [3]) is an A_{π} -group. But the class of A_{π} -groups is larger than the class of groups satisfying D_{π} since for instance the projective group PSL(2, 7) of order 168 has two classes of subgroups isomorphic to the symmetric group S_4 which are conjugate in the automorphism group of PSL(2, 7). It is also clear that an A_{π} -group satisfies proposition E_{π} of [3] and that there are E_{π} -groups not A_{π} -groups; for instance, PSL(2, 11) of order 660 which has two non-isomorphic groups of order 12.

Before stating the main theorem it will be convenient to have the following lemma whose easy proof is omitted.

LEMMA. Let the group D be the direct product of groups G_i for $i=1,2,\dots,n$, where each G_i is isomorphic to a given group G. Then a Hall π -subgroup of D is the product of Hall π -subgroups H_i of G_i and D is an A_{π} -group if and only if G is.

The main theorem is as follows.

THEOREM. Let G be a finite A_{π} -group for a certain set of primes π : then the number $n_{\pi}(G)$ of Hall π -subgroups of G is a product of integers such that each integer is either the number of Hall π -subgroups of a simple A_{π} -group or is a prime power congruent to 1 modulo a prime of π .

The proof is by induction on |G| the order of G. If G is a direct product of isomorphic simple groups the theorem follows from the above lemma. Accordingly we consider the case where G has a proper non-trivial characteristic subgroup K, which we shall assume to be minimal. We let \bar{G} denote G/K.

Case I. K is a π -group. It is easy to see then that there is a one-one cor-

Received March 20, 1968.

¹ The author thanks Professor Everett Dade for suggesting the reformulation of the theorem in terms of A_{π} groups, and the National Science Foundation for support.