COMPLEMENT THEOREMS BEYOND THE TRIVIAL RANGE ${ }^{1}$

BY

I. Ivanšić, R. B. Sher and G. A. Venema

1. Introduction

By a well known theorem of Chapman [2], if X and Y are Z-sets in the Hilbert cube Q, then X and Y have the same shape (abbreviated $\operatorname{Sh}(X)=$ $\operatorname{Sh}(Y)$) if and only if $Q-X$ is homeomorphic with $Q-Y$. In recent years there has been a great deal of interest in finite-dimensional analogues of this result, the principal aim being to find conditions on compacta $X, Y \subset E^{n}$ such that $\operatorname{Sh}(X)=\operatorname{Sh}(Y)$ if and only if $E^{n}-X \cong E^{n}-Y$. Thus far all results along this line have required either that the dimensions or fundamental dimensions of X and Y lie at most in the trivial $([n / 2]-1)$ range with respect to n [3], [7], [8], [11], [17], [20] or that $\operatorname{Sh}(X)$ and $\operatorname{Sh}(Y)$ have particularly nice representatives, such as spheres, manifolds, or finite complexes [4], [11], [12], [13], [15], [21]. It is our purpose to present here a theorem in (fundamental) codimension four. We are able to go beneath the trivial range in ambient dimension by assuming appropriate connectivity conditions on the embedded compacta; these conditions allow us to replace general position arguments which suffice in the trivial range by ones using engulfing. Our main result is as follows.

Theorem A. Let X and Y be r-shape connected continua in E^{n} of fundamental dimension at most k and satisfying ILC, where

$$
n \geq \max (2 k+2-r, k+3,5) .
$$

Then $\operatorname{Sh}(X)=\operatorname{Sh}(Y)$ implies $E^{n}-X \cong E^{n}-Y$. The converse holds if $n \geq k+4$.
Nowak [14] has shown that if X is a finite dimensional approximatively 1 -connected compactum and $\breve{H}^{i}(X)=0$ for $i>k$, then $F d(X) \leq k$. This fact along with Theorem A yields the following.

Theorem B. Let X and Y be r-shape connected continua in E^{n} satisfying ILC and such that $\check{H}^{i}(X)=0=\breve{H}^{i}(Y)$ for $i>k$, where

$$
n \geq \max (2 k+2-r, k+3,5)
$$

[^0]
[^0]: Received April 13, 1979.
 ${ }^{1}$ This work was completed while the first-named author was visiting the University of North Carolina at Greensboro. The third-named author was partially supported by grants from the National Science Foundation.

