A NEW LOWER BOUND FOR THE PSEUDOPRIME COUNTING FUNCTION

Carl Pomerance

1. Introduction

A composite natural number n is called a pseudoprime (to base 2) if

$$
2^{n-1} \equiv 1 \quad(\bmod n)
$$

The least pseudoprime is $341=11 \cdot 31$. Let $\mathscr{P}(x)$ denote the number of pseudoprimes not exceeding x. It is known that there are positive constants c_{1}, c_{2} such that for all large x,

$$
c_{1} \log x \leq \mathscr{P}(x) \leq x \cdot \exp \left\{-c_{2}(\log x \cdot \log \log x)^{1 / 2}\right\}
$$

The lower bound is implicit in Lehmer [6] and the upper bound is due to Erdös [4]. Very recently in [9] we have obtained an improvement in the upper bound. There have been improvements on the lower bound, but they have only concerned the size of the constant c_{1}. For example, see Rotkiewicz [13].

In this paper we show that there is a positive constant α such that for all large x,

$$
\mathscr{P}(x) \geq \exp \left\{\left(\log x^{\alpha}\right)\right\}
$$

In particular, we may take $\alpha=5 / 14$.
Erdös conjectures that $\mathscr{P}(x)=x^{1-\varepsilon(x)}$ where $\varepsilon(x) \rightarrow 0$ as $x \rightarrow \infty$. See Pomerance, Selfridge, Wagstaff [10] for more on this.

Our main result holds for pseudoprimes to any base and in fact for strong pseudoprimes to any base (see Section 2 for definitions). Moreover our result holds if we just count those pseudoprimes n with at least $(\log n)^{5 / 14}$ distinct prime factors.

On the negative side, if $\mathscr{P}^{\prime}(x), \mathscr{P}^{\prime \prime}(x)$, and $\mathscr{P}^{k}(x)$ denote respectively the counting functions for pseudoprimes that are square-free, not square-free, and have at most k distinct prime factors, then we cannot show any one of $\mathscr{P}^{\prime}(x) / \log x, \mathscr{P}^{\prime \prime}(x), \mathscr{P}^{k}(x) / \log x$ is unbounded.

We wish to thank H. W. Lenstra, Jr. and S. S. Wagstaff, Jr. for some helpful comments during early stages of this paper.

[^0]
[^0]: Received January 11, 1980.

