THE LATTICE OF GROUPS CONTAINING PSL(n,q) AND ACTING ON GRASSMANNIANS

BY
Justine Skalba

Section 1

We consider here the set Ω of all subspaces of a fixed dimension inside a vector space. This set is technically called a Grassmannian. The special linear group has a natural representation on Ω, which we will show to be essentially maximal inside the symmetric group on Ω. More precisely, we have the following terminology and result.

Let V be an n-dimensional vector space over a finite field with q elements. Let $\Omega=\Omega(V, k)$ be the set of all k-dimensional subspaces of V. Then $P \Gamma L(n, q)$ has a faithful natural representation on $\Omega(n, k)$, which we will denote by $G_{o}=G_{o}(n, k)$. In the case $n=2 k,\left(G_{o}, \Omega\right)$ is permutation isomorphic to its dual, and we have natural graph automorphisms arising from the inverse transpose transformation. We define $\hat{G}_{o}=\left\langle G_{o}, j\right\rangle$ where j is any non-trivial graph automorphism of G_{o}. Observe that G_{o} has index 2 in \hat{G}_{o}, and all graph automorphisms are contained in \hat{G}_{o}. Let $S_{o}=S_{0}(n, k)$ be the representation of $\operatorname{PSL}(n, q)$ on Ω. Denote by A_{Ω} the alternating group on Ω. Finally, let G be any subgroup of S_{a} containing S_{o}. We will prove:

Theorem. Suppose $1 \leq k \leq n$ and $(n, k) \neq(2,1)$.

$$
\text { If } n \neq 2 k, \text { then } G \subseteq G_{o} \text { or } A_{\Omega} \subseteq G
$$

If $n=2 k$, then $G \subseteq \hat{G}_{o}$ or $A_{\Omega} \subseteq G$.

There are questions concerning what occurs when we represent a Chevalley group on the cosets of a maximal parabolic subgroup. In particular, when is this group maximal in the alternating or symmetric group on these cosets? A maximal parabolic subgroup is maximal as a subgroup of its Chevalley group [9]. In the case of $\operatorname{PSL}(n, q)$, the maximal parabolics fix k-dimensional subspaces for $1 \leq k<n$. Therefore the representation of S_{o} on Ω is primitive. In our case, it's very easy to prove this directly. As the idea of the proof is used in a later lemma, we include it further on in our introduction.

The cases $k=1, n \geq 3$ have already been solved by Kantor and McDonough [7]. Considering the dual space of V, the cases $k=n-1$ with

[^0]
[^0]: Received April 6, 1981.

