THE LATTICE OF GROUPS CONTAINING PSL(n,q) AND ACTING ON GRASSMANNIANS

BY

JUSTINE SKALBA

Section 1

We consider here the set Ω of all subspaces of a fixed dimension inside a vector space. This set is technically called a Grassmannian. The special linear group has a natural representation on Ω , which we will show to be essentially maximal inside the symmetric group on Ω . More precisely, we have the following terminology and result.

Let V be an n-dimensional vector space over a finite field with q elements. Let $\Omega = \Omega(V,k)$ be the set of all k-dimensional subspaces of V. Then $P\Gamma L(n,q)$ has a faithful natural representation on $\Omega(n,k)$, which we will denote by $G_o = G_o(n,k)$. In the case n = 2k, (G_o,Ω) is permutation isomorphic to its dual, and we have natural graph automorphisms arising from the inverse transpose transformation. We define $\hat{G}_o = \langle G_o, j \rangle$ where j is any non-trivial graph automorphism of G_o . Observe that G_o has index 2 in \hat{G}_o , and all graph automorphisms are contained in \hat{G}_o . Let $S_o = S_o(n,k)$ be the representation of PSL(n,q) on Ω . Denote by A_{Ω} the alternating group on Ω . Finally, let G be any subgroup of S_{Ω} containing S_o . We will prove:

THEOREM. Suppose $1 \le k \le n$ and $(n,k) \ne (2,1)$. If $n \ne 2k$, then $G \subseteq G_o$ or $A_n \subseteq G$. If n = 2k, then $G \subseteq \hat{G}_o$ or $A_n \subseteq G$.

There are questions concerning what occurs when we represent a Chevalley group on the cosets of a maximal parabolic subgroup. In particular, when is this group maximal in the alternating or symmetric group on these cosets? A maximal parabolic subgroup is maximal as a subgroup of its Chevalley group [9]. In the case of PSL(n,q), the maximal parabolics fix k-dimensional subspaces for $1 \le k < n$. Therefore the representation of S_o on Ω is primitive. In our case, it's very easy to prove this directly. As the idea of the proof is used in a later lemma, we include it further on in our introduction.

The cases k = 1, $n \ge 3$ have already been solved by Kantor and McDonough [7]. Considering the dual space of V, the cases k = n - 1 with

Received April 6, 1981.

^{• 1984} by the Board of Trustees of the University of Illinois Manufactured in the United States of America