EXTREME POINTS OF UNIT BALLS OF QUOTIENTS OF L^{∞} BY DOUGLAS ALGEBRAS

BY

Keiji Izuchi

1. Introduction

Let H^{∞} be the space of bounded analytic functions in the unit disk D. Identifying with boundary functions, we consider H^{∞} as an (essentially) uniformly closed subalgebra of L^{∞} , the space of bounded measurable functions on the unit circle ∂D with respect to the normalized Lebesgue measure m. Every uniformly closed subalgebra between H^{∞} and L^{∞} is called a Douglas algebra. In this paper, B always denotes a Douglas algebra. It is well known that $H^{\infty} + C$ is the smallest Douglas algebra containing H^{∞} properly, where C is the space of continuous functions on ∂D . The reader is referred to [5] and [12] for the theory of Douglas algebras, and [4] for uniform algebras.

In this paper, we will study the following problem.

PROBLEM. For which Douglas algebra B, does $ball(L^{\infty}/B)$ have extreme points?

We denote by ball(Y) the closed unit ball of a Banach space Y. A point x in ball(Y) is called extreme if $x = (x_1 + x_2)/2$ for x_1, x_2 in ball(Y) implies $x = x_1 = x_2$. An equivalent condition for a point x in ball(Y) to be extreme is that the condition $||x \pm y|| \le 1$, $y \in Y$, implies y = 0.

Up to now, we know the following theorems about extreme points of $ball(L^{\infty}/B)$.

KOOSIS' THEOREM [9]. ball (L^{∞}/H^{∞}) has an extreme point. A point $f + H^{\infty}$ in ball (L^{∞}/H^{∞}) is an extreme point if and only if there is a function h in $f + H^{\infty}$ such that |h| = 1 a.e. dm and ||h + g|| > 1 for every $g \in H^{\infty}$ with $g \neq 0$.

AXLER, BERG, JEWELL AND SHIELDS' THEOREM [2]. ball $(L^{\infty}/H^{\infty} + C)$ does not have extreme points.

For a subset F of ∂D , we denote by L_F^{∞} the space of functions in L^{∞} which can be redefined on a set of measure zero so as to become continuous at every

Received August 19, 1983.

^{© 1986} by the Board of Trustees of the University of Illinois Manufactured in the United States of America