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EXTREME POINTS OF UNIT BALLS OF QUOTIENTS OF
L BY DOUGLAS ALGEBRAS

BY
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I. Introduction

Let H be the space of bounded analytic functions in the unit disk D.
Identifying with boundary functions, we consider H as an (essentially)
uniformly closed subalgebra of L, the space of bounded measurable func-
tions on the unit circle OD with respect to the normalized Lebesgue measure
m. Every uniformly closed subalgebra between H and L is called a
Douglas algebra. In this paper, B always denotes a Douglas algebra. It is well
known that H + C is the smallest Douglas algebra containing H properly,
where C is the space of continuous functions on OD. The reader is referred to
[5] and [12] for the theory of Douglas algebras, and [4] for uniform algebras.

In this paper, we will study the following problem.

PROBLEM. For which Douglas algebra B, does ball(L/B) have extreme
points?
We denote by ball(Y) the closed unit ball of a Banach space Y. A point x in

ball(Y) is called extreme if x (x + x2)/2 for Xl, x2 in ball(Y) implies
x xl x2. An equivalent condition for a point x in ball(Y) to be extreme is
that the condition [Ix + Y ll -< 1, y Y, implies y O.
Up to now, we know the following theorems about extreme points of

ball(L/B).

KoosIs’ THEOREM [9]. ball(L/H) has an extreme point. A pointf + H
in ball(L/H) is an extreme point if and only if there is a function h in

f + H such that Ih[ 1 a.e. dm and lib + g[[ > 1 for every g H with
g =/= O.

AXLER, BERG, JEWELL AND SHIELDS’ THEOREM [2].
does not have extreme points.

ball(L/H + C)

For a subset F of OD, we denote by L the space of functions in L which
can be redefined on a set of measure zero so as to become continuous at every
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